Abaqus Output Database๏ƒ

The Python ODB API commands are used to read and write data from an output database (.odb) file. The path to the Odb object can be via the session.odbs repository or via a variable. In this chapter the Access and Path statements refer to a variable called odb that represents an existing Odb object.

Classes๏ƒ

Odb๏ƒ

class Odb(name, analysisTitle='', description='', path='')[source]๏ƒ

Bases: AmplitudeOdb, FilterOdb, MaterialOdb, BeamSectionProfileOdb, Displayable

The Odb object is the in-memory representation of an output database (ODB) file.

Note

This object can be accessed by:

import odbAccess
session.odbs[name]

This method creates a new Odb object.

Note

This function can be accessed by:

session.Odb
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • analysisTitle (str, default: '') โ€“ A String specifying the title of the output database. The default value is an empty string.

  • description (str, default: '') โ€“ A String specifying the description of the output database. The default value is an empty string.

  • path (str, default: '') โ€“ A String specifying the path to the file where the new output database (.odb ) file will be written. The default value is an empty string.

Returns:

An Odb object.

Return type:

Odb

Public Data Attributes:

Inherited from OdbBase

isReadOnly

A Boolean specifying whether the output database was opened with read-only access.

amplitudes

A repository of Amplitude objects.

filters

A repository of Filter objects.

rootAssembly

An OdbAssembly object.

jobData

A JobData object.

parts

A repository of OdbPart objects.

materials

A repository of Material objects.

steps

A repository of OdbStep objects.

sections

A repository of Section objects.

sectionCategories

A repository of SectionCategory objects.

sectorDefinition

A SectorDefinition object.

userData

A UserData object.

customData

A RepositorySupport object.

profiles

A repository of Profile objects.

Public Methods:

Part(name,ย embeddedSpace,ย type)

This method creates an OdbPart object.

Step(name,ย description,ย domain[,ย ...])

This method creates an OdbStep object.

SectionCategory(name,ย description)

This method creates a SectionCategory object.

Inherited from AmplitudeOdb

ActuatorAmplitude(name[,ย timeSpan])

This method creates a ActuatorAmplitude object.

DecayAmplitude(name,ย initial,ย maximum,ย ...)

This method creates a DecayAmplitude object.

EquallySpacedAmplitude(name,ย fixedInterval,ย data)

This method creates an EquallySpacedAmplitude object.

ModulatedAmplitude(name,ย initial,ย magnitude,ย ...)

This method creates a ModulatedAmplitude object.

PeriodicAmplitude(name,ย frequency,ย start,ย ...)

This method creates a PeriodicAmplitude object.

PsdDefinition(name,ย data[,ย unitType,ย ...])

This method creates a PsdDefinition object.

SmoothStepAmplitude(name,ย data[,ย timeSpan])

This method creates a SmoothStepAmplitude object.

SolutionDependentAmplitude(name[,ย initial,ย ...])

This method creates a SolutionDependentAmplitude object.

SpectrumAmplitude(name,ย method,ย data[,ย ...])

This method creates a SpectrumAmplitude object.

TabularAmplitude(name,ย data[,ย smooth,ย timeSpan])

This method creates a TabularAmplitude object.

Inherited from FilterOdb

ButterworthFilter(name,ย cutoffFrequency[,ย ...])

This method creates a ButterworthFilter object.

Chebyshev1Filter(name,ย cutoffFrequency[,ย ...])

This method creates a Chebyshev1Filter object.

Chebyshev2Filter(name,ย cutoffFrequency[,ย ...])

This method creates a Chebyshev2Filter object.

OperatorFilter(name,ย cutoffFrequency[,ย ...])

This method creates an OperatorFilter object.

Inherited from MaterialOdb

Material(name[,ย description,ย materialIdentifier])

This method creates a Material object.

Inherited from BeamSectionProfileOdb

ArbitraryProfile(name,ย table)

This method creates a ArbitraryProfile object.

BoxProfile(name,ย a,ย b,ย uniformThickness,ย t1)

This method creates a BoxProfile object.

CircularProfile(name,ย r)

This method creates a CircularProfile object.

GeneralizedProfile(name,ย area,ย i11,ย i12,ย ...)

This method creates a GeneralizedProfile object.

HexagonalProfile(name,ย r,ย t)

This method creates a HexagonalProfile object.

IProfile(name,ย l,ย h,ย b1,ย b2,ย t1,ย t2,ย t3)

This method creates an IProfile object.

LProfile(name,ย a,ย b,ย t1,ย t2)

This method creates a LProfile object.

PipeProfile(name,ย r,ย t)

This method creates a PipeProfile object.

RectangularProfile(name,ย a,ย b)

This method creates a RectangularProfile object.

TProfile(name,ย b,ย h,ย l,ย tf,ย tw)

This method creates a TProfile object.

TrapezoidalProfile(name,ย a,ย b,ย c,ย d)

This method creates a TrapezoidalProfile object.

Inherited from OdbBase

__init__(name[,ย analysisTitle,ย description,ย ...])

This method creates a new Odb object.

close()

This method closes an output database.

getFrame(frameValue[,ย match])

This method returns the frame at the specified time, frequency, or mode.

save()

This method saves output to an output database (.odb ) file.

update()

This method is used to update an Odb object in memory while an Abaqus analysis writes data to the associated output database.


Member Details:

Part(name, embeddedSpace, type)[source]๏ƒ

This method creates an OdbPart object. Nodes and elements are added to this object at a later stage.

Note

This function can be accessed by:

session.odbs[name].Part
Parameters:
  • name (str) โ€“ A String specifying the part name.

  • embeddedSpace (Literal[THREE_D, TWO_D_PLANAR, AXISYMMETRIC]) โ€“ A SymbolicConstant specifying the dimensionality of the Part object. Possible values are THREE_D, TWO_D_PLANAR, and AXISYMMETRIC.

  • type (Literal[DEFORMABLE_BODY, ANALYTIC_RIGID_SURFACE]) โ€“ A SymbolicConstant specifying the type of the Part object. Possible values are DEFORMABLE_BODY and ANALYTIC_RIGID_SURFACE.

Returns:

An OdbPart object.

Return type:

OdbPart

SectionCategory(name, description)[source]๏ƒ

This method creates a SectionCategory object.

Note

This function can be accessed by:

session.odbs[name].SectionCategory
Parameters:
  • name (str) โ€“ A String specifying the name of the category.

  • description (str) โ€“ A String specifying the description of the category.

Returns:

A SectionCategory object.

Return type:

SectionCategory

Step(name, description, domain, timePeriod=0, previousStepName='', procedure='', totalTime=-1.0)[source]๏ƒ

This method creates an OdbStep object.

Note

This function can be accessed by:

session.odbs[name].Step
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • description (str) โ€“ A String specifying the step description.

  • domain (Literal[TIME, FREQUENCY, ARC_LENGTH, MODAL]) โ€“ A SymbolicConstant specifying the domain of the step. Possible values are TIME, FREQUENCY, ARC_LENGTH, and MODAL.The type of OdbFrame object that can be created for this step is based on the value of the domain argument.

  • timePeriod (float, default: 0) โ€“ A Float specifying the time period of the step. timePeriod is required if domain = TIME; otherwise, this argument is not applicable. The default value is 0.0.

  • previousStepName (str, default: '') โ€“ A String specifying the preceding step. If previousStepName is the empty string, the last step in the repository is used. If previousStepName is not the last step, this will result in a change to the previousStepName member of the step that was in that position. A special value โ€˜Initialโ€™ refers to the internal initial model step and may be used exclusively for inserting a new step at the first position before any other existing steps. The default value is an empty string.

  • procedure (str, default: '') โ€“

    A String specifying the step procedure. The default value is an empty string. The following is the list of valid procedures:

    • *ANNEAL

    • *BUCKLE

    • *COMPLEX FREQUENCY

    • *COUPLED TEMPERATURE-DISPLACEMENT

    • *COUPLED TEMPERATURE-DISPLACEMENT, CETOL

    • *COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE

    • *COUPLED THERMAL-ELECTRICAL, STEADY STATE

    • *COUPLED THERMAL-ELECTRICAL

    • *COUPLED THERMAL-ELECTRICAL, DELTMX

    • *DYNAMIC

    • *DYNAMIC, DIRECT

    • *DYNAMIC, EXPLICIT

    • *DYNAMIC, SUBSPACE

    • *DYNAMIC TEMPERATURE-DISPLACEMENT, EXPLICT

    • *ELECTROMAGNETIC, HIGH FREQUENCY, TIME HARMONIC

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN, DIRECT

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME HARMONIC

    • *FREQUENCY

    • *GEOSTATIC

    • *HEAT TRANSFER

    • *HEAT TRANSFER, DELTAMX=__

    • *HEAT TRANSFER, STEADY STATE

    • *MAGNETOSTATIC

    • *MAGNETOSTATIC, DIRECT

    • *MASS DIFFUSION

    • *MASS DIFFUSION, DCMAX=

    • *MASS DIFFUSION, STEADY STATE

    • *MODAL DYNAMIC

    • *RANDOM RESPONSE

    • *RESPONSE SPECTRUM

    • *SOILS

    • *SOILS, CETOL/UTOL

    • *SOILS, CONSOLIDATION

    • *SOILS, CONSOLIDATION, CETOL/UTOL

    • *STATIC

    • *STATIC, DIRECT

    • *STATIC, RIKS

    • *STEADY STATE DYNAMICS

    • *STEADY STATE TRANSPORT

    • *STEADY STATE TRANSPORT, DIRECT

    • *STEP PERTURBATION, *STATIC

    • *SUBSTRUCTURE GENERATE

    • *USA ADDDED MASS GENERATION

    • *VISCO

  • totalTime (float, default: -1.0) โ€“ A Float specifying the analysis time spend in all the steps previous to this step. The default value is โˆ’1.0.

Returns:

An OdbStep object.

Return type:

OdbStep

Raises:

ValueError โ€“ previousStepName is invalid, If previousStepName is invalid.

Other Classes๏ƒ

class AnalyticSurface[source]๏ƒ

Bases: object

The AnalyticSurface object is a geometric surface that can be described with straight and/or curved line segments.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].analyticSurface
session.odbs[name].rootAssembly.instances[name].analyticSurface
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.analyticSurface

Member Details:

filletRadius: float = 0[source]๏ƒ

A Float specifying radius of curvature to smooth discontinuities between adjoining segments. The default value is 0.0.

localCoordData: Optional[float] = None[source]๏ƒ

A tuple of tuples of Floats specifying the global coordinates of points representing the local coordinate system, if used.

name: str = ''[source]๏ƒ

A String specifying the name of the analytic surface.

segments: OdbSequenceAnalyticSurfaceSegment = <abaqus.Odb.OdbSequenceAnalyticSurfaceSegment.OdbSequenceAnalyticSurfaceSegment object>[source]๏ƒ

An OdbSequenceAnalyticSurfaceSegment object specifying the profile associated with the surface.

type: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the type of AnalyticSurface object. Possible values are SEGMENTS, CYLINDER, and REVOLUTION.

class OdbSequenceAnalyticSurfaceSegment[source]๏ƒ

Bases: object

A sequence of AnalyticSurfaceSegment describing an analytic surface profile.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].analyticSurface.segments
session.odbs[name].rootAssembly.instances[name].analyticSurface.segments
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.analyticSurface.segments

This method creates a OdbSequenceAnalyticSurfaceSegment object.

Note

This function can be accessed by:

odbAccess.AnalyticSurfaceProfile
Returns:

An OdbSequenceAnalyticSurfaceSegment object.

Return type:

OdbSequenceAnalyticSurfaceSegment

Member Details:

Circle(center, endPoint)[source]๏ƒ

This method adds a AnalyticSurfaceSegment describing a circular segment of the surface profile.

Parameters:
  • center (tuple) โ€“ A sequence of Floats specifying the coordinates of center of the circular segment.

  • endPoint (tuple) โ€“ A sequence of Floats specifying the coordinates of end point of the circular segment.

Line(endPoint)[source]๏ƒ

This method adds a AnalyticSurfaceSegment describing the line segment of the surface profile.

Parameters:

endPoint (tuple) โ€“ A sequence of Floats specifying the coordinates of end point.

Parabola(middlePoint, endPoint)[source]๏ƒ

This method adds a AnalyticSurfaceSegment describing a parabolic segment of the surface profile.

Parameters:
  • middlePoint (tuple) โ€“ A sequence of Floats specifying the coordinates of middle point of the parabolic segment.

  • endPoint (tuple) โ€“ A sequence of Floats specifying the coordinates of end point of the parabolic segment.

Start(origin)[source]๏ƒ

This method adds a AnalyticSurfaceSegment describing the first segment of the surface profile.

Parameters:

origin (tuple) โ€“ A sequence of Floats specifying the coordinates of start point.

class AnalyticSurfaceSegment(type, data)[source]๏ƒ

Bases: object

An individual segment of the analytic surface.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].analyticSurface.segments[i]
session.odbs[name].rootAssembly.instances[name].analyticSurface.segments[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.analyticSurface.segments[i]

This method creates an AnalyticSurfaceSegment object.

Note

This function can be accessed by:

odbAccess.AnalyticSurfaceSegment
Parameters:
  • type (Literal[CIRCLE, START, LINE, PARABOLA]) โ€“ A SymbolicConstant specifying the type of AnalyticSurfaceSegment. Possible values are START, LINE, CIRCLE, and PARABOLA.

  • data (tuple) โ€“ A sequence of sequences of Floats specifying the coordinates of point/s representing the segment of the AnalyticSurface object. If type = CIRCLE, the first row contains coordinates of the end point and the second row contains coordinates of the center point. If type = PARABOLA, the first row contains coordinates of the middle point and the second row contains coordinates of the end point. If type = START or type = LINE, a single row contains coordinates of the start/end point.

Returns:

An AnalyticSurfaceSegment object.

Return type:

AnalyticSurfaceSegment

Member Details:

data: tuple[source]๏ƒ

A sequence of sequences of Floats specifying the coordinates of point/s representing the segment of the AnalyticSurface object. If type = CIRCLE, the first row contains coordinates of the end point and the second row contains coordinates of the center point. If type = PARABOLA, the first row contains coordinates of the middle point and the second row contains coordinates of the end point. If type = START or type = LINE, a single row contains coordinates of the start/end point.

type: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the type of AnalyticSurfaceSegment. Possible values are START, LINE, CIRCLE, and PARABOLA.

class BeamOrientation[source]๏ƒ

Bases: object

The BeamOrientation object represents the direction of the first beam section axis n1n1. Specifying the beam orientation using an additional node in the element connectivity list is not supported.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].beamOrientations[i]
session.odbs[name].rootAssembly.instances[name].beamOrientations[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.beamOrientations[i]

Member Details:

method: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the orientation assignment method. Possible values are N1_COSINES, CSYS, and VECT.

region: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying a region for which the beam orientation is defined.

vector: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying direction cosines of the n1-direction of the beam cross-section.

class OdbSet(name, nodes)[source]๏ƒ

Bases: object

The set objects are used to identify regions of a model.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].elementSets[name]
session.odbs[name].parts[name].nodeSets[name]
session.odbs[name].parts[name].surfaces[name]
session.odbs[name].rootAssembly.elementSets[name]
session.odbs[name].rootAssembly.instances[name].elementSets[name]
session.odbs[name].rootAssembly.instances[name].nodeSets[name]
session.odbs[name].rootAssembly.instances[name].surfaces[name]
session.odbs[name].rootAssembly.nodeSets[name]
session.odbs[name].rootAssembly.surfaces[name]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.elementSets[name]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.nodeSets[name]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.surfaces[name]

This method creates a node set from an array of OdbMeshNode objects (for part instance-level sets) or from a sequence of arrays of OdbMeshNode objects (for assembly-level sets).

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • nodes (Sequence[OdbMeshNode]) โ€“ A sequence of OdbMeshNode objects. For example, for a part:nodes=part1.nodes[1:5]`For an assembly:`nodes=(instance1.nodes[6:7], instance2.nodes[1:5])

Returns:

An OdbSet object.

Return type:

OdbSet

Member Details:

ElementSet(name, elements)[source]๏ƒ

This method creates an element set from an array of OdbMeshElement objects (for part instance-level sets) or from a sequence of arrays of OdbMeshElement objects (for assembly-level sets).

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • elements (Sequence[OdbMeshElement]) โ€“ A sequence of OdbMeshElement objects. For example, for a part:elements=instance1.elements[1:5]`For an assembly:`elements=(instance1.elements[1:5], instance2.elements[1:5])

Returns:

An OdbSet object.

Return type:

OdbSet

ElementSetFromElementLabels(name, elementLabels)[source]๏ƒ

This method creates an element set from a sequence of element labels.

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • elementLabels (tuple) โ€“ A sequence of element labels. An element label is a sequence of Int element identifiers. For example, for a part:elementLabels=(2,3,5,7)`For an assembly:`elementLabels=((โ€˜Instance-1โ€™, (2,3,5,7)), (โ€˜Instance-2โ€™, (1,2,3)))

Returns:

An OdbSet object.

Return type:

OdbSet

MeshSurface(name, meshSurfaces)[source]๏ƒ

This method creates a surface from the element and side identifiers for the assembly.

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • meshSurfaces (tuple) โ€“

    A sequence of sequences. Each sequence consists of an element sequence and a side identifier. The possible side identifiers depend on the type of element, as described in the following table:

    Sequence of elements | Side identifiers |
    โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€“ | โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”โ€”- |
    Solid elements | FACE1, FACE2, FACE3, FACE4, FACE5, FACE6 |
    Three-dimensional shell elements | SIDE1, SIDE2 |
    Two-dimensional elements | FACE1, FACE2, FACE3, FACE4 |
    Wire elements | END, END2 |

    For example:

    side1Elements=instance1.elements[217:218]
    side2Elements=instance2.elements[100:105]
    assembly.MeshSurface(
        name='Surf-1',
        meshSurfaces=((side1Elems,SIDE1), (side2Elems,SIDE2))
    )
    

Returns:

An OdbSet object.

Return type:

OdbSet

MeshSurfaceFromElsets(name, elementSetSeq)[source]๏ƒ

This method creates a mesh surface from a sequence of element sets.

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • elementSetSeq (tuple) โ€“

    A sequence of element sets. For example:

    elementSetSeq=((elset1,SIDE1),(elset2,SIDE2))``
    

    where elset1=session.odbs[name].rootAssembly.elementSets['Clutch'] and SIDE1 and SIDE2 indicate the side of the element set.

Returns:

An OdbSet object.

Return type:

OdbSet

MeshSurfaceFromLabels(name, surfaceLabels)[source]๏ƒ

This method creates a mesh surface from a sequence of surface labels.

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • surfaceLabels (tuple) โ€“

    A sequence of surface labels. For example:

    surfaceLabels=(('Instance-1', ((10, FACE1), (11, FACE2))),  ('Instance-2', ((10, FACE3), (12, FACE4))))
    

    where 10 is an element number and FACE1 indicates the side of the element.

Returns:

An OdbSet object.

Return type:

OdbSet

NodeSetFromNodeLabels(name, nodeLabels)[source]๏ƒ

This method creates a node set from a sequence of node labels.

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • nodeLabels (tuple) โ€“ A sequence of node labels. A node label is a sequence of Int node identifiers. For example, for a part:nodeLabels=(2,3,5,7)`For an assembly:`nodeLabels=((โ€˜Instance-1โ€™, (2,3,5,7)), (โ€˜Instance-2โ€™, (1,2,3)))

Returns:

An OdbSet object.

Return type:

OdbSet

elements: List[OdbMeshElement] = [][source]๏ƒ

An OdbMeshElementArray object specifying the elements of an OdbSet. If a set spans more than one part instance, this member is a sequence of sequences for each part instance.

faces: SymbolicConstant[source]๏ƒ

A tuple of SymbolicConstants specifying the element face. If a set spans more than one part instance, this member is a sequence of sequences for each part instance.

instanceNames: tuple = ()[source]๏ƒ

A tuple of Strings specifying the namespaces for the nodes, elements, and faces; None if the set is on a Part or an OdbInstance object.

instances: str = ''[source]๏ƒ

A repository of an OdbInstance object.

New in version 2020: The instances attribute was added.

isInternal: Union[AbaqusBoolean, bool] = 0[source]๏ƒ

A Boolean specifying whether the set is internal.

New in version 2020: The isInternal attribute was added.

name: str = ''[source]๏ƒ

A String specifying the name of the set and the repository key.

nodes: List[OdbMeshNode] = [][source]๏ƒ

An OdbMeshNodeArray object specifying the nodes of an OdbSet. If a set spans more than one part instance, this member is a sequence of sequences for each part instance.

class FieldBulkData[source]๏ƒ

Bases: object

The FieldBulkData object represents the entire field data for a class of elements or nodes. All elements in a class correspond to the same element type and material.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].frames[i].fieldOutputs[name].bulkDataBlocks[i]

Member Details:

componentLabels: tuple = ()[source]๏ƒ

A sequence of Strings specifying the component labels.

conjugateData: tuple = ()[source]๏ƒ

A tuple of Floats specifying data in the form described by type. If type = TENSOR or VECTOR, conjugateData is a sequence containing the imaginary part of the components for each element or node in the block. If the underlying data are in double precision, an exception will be thrown.

data: tuple = ()[source]๏ƒ

A tuple of Floats specifying data in the form described by type. If type = TENSOR or VECTOR, data is a sequence containing the components for each element or node in the block. If the underlying data are in double precision, an exception will be thrown.

elementLabels: tuple = ()[source]๏ƒ

A sequence of Ints specifying the element labels of the elements in the block. elementLabels is valid only if position = INTEGRATION_POINT, CENTROID, ELEMENT_NODAL, or ELEMENT_FACE.

instance: OdbInstance = <abaqus.Odb.OdbInstance.OdbInstance object>[source]๏ƒ

An OdbInstance object specifying the part to which the labels belong.

integrationPoints: tuple = ()[source]๏ƒ

A sequence of Ints specifying the integration points in the elements in the block. integrationPoints is available only if position = INTEGRATION_POINT.

localCoordSystem: Optional[float] = None[source]๏ƒ

A pointer to an array of Floats specifying the quaternion representing the local coordinate system (the rotation from global to local) at each output location. The quaternion is returned in the form q=(q,q0), which is the reverse of that shown in [Rotation variables](https://help.3ds.com/2022/english/DSSIMULIA_Established/SIMACAETHERefMap/simathe-c-rotationvars.htm?ContextScope=all). localCoordSystem is available for TENSOR data written in a local coordinate system. It is also available for VECTOR data for connector element outputs. For connector element outputs the quaternion form is q=(q0,q)q=(q0,q), which represents the rotation from local to global. If the underlying data are in double precision, an exception will be thrown.

mises: tuple = ()[source]๏ƒ

A sequence of Floats specifying the calculated von Mises stress at each output location in the block of element data, or NULL. The value is valid only when the validInvariants member includes MISES; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

nodeLabels: tuple = ()[source]๏ƒ

A sequence of Ints specifying the node labels of the nodes in the block. nodelabels is valid only if position = ELEMENT_NODAL or NODAL.

position: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the position of the output in the element. Possible values are:

  • NODAL, specifying the values calculated at the nodes.

  • INTEGRATION_POINT, specifying the values calculated at the integration points.

  • ELEMENT_NODAL, specifying the values obtained by extrapolating results calculated at the integration points.

  • ELEMENT_FACE.

  • CENTROID, specifying the value at the centroid obtained by extrapolating results calculated at the integration points.

sectionPoint: Optional[SectionPoint] = None[source]๏ƒ

A SectionPoint object specifying the section point number of the current block of data.

type: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the output type. Possible values are SCALAR, VECTOR, TENSOR_3D_FULL, TENSOR_3D_PLANAR, TENSOR_3D_SURFACE, TENSOR_2D_PLANAR, and TENSOR_2D_SURFACE.

class OdbInstance(name, object, localCoordSystem=())[source]๏ƒ

Bases: OdbInstanceBase

This method creates an OdbInstance object from an OdbPart object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.Instance
Parameters:
  • name (str) โ€“ A String specifying the instance name.

  • object (OdbPart) โ€“ An OdbPart object.

  • localCoordSystem (tuple, default: ()) โ€“ A sequence of sequences of three Floats specifying the rotation and translation of the part instance in the global Cartesian coordinate system. The first three sequences specify the new local coordinate system with its center at the origin.The first sequence specifies a point on the 1-axis.The second sequence specifies a point on the 2-axis.The third sequence specifies a point on the 3-axis.The fourth sequence specifies the translation of the local coordinate system from the origin to its intended location.For example, the following sequence moves a part 10 units in the X direction with no rotation: localCoordSystem = ((1, 0, 0), (0, 1, 0), (0, 0, 1), (10, 0, 0))`The following sequence moves a part 5 units in the **X** direction with rotation: `localCoordSystem = ((0, 1, 0), (1, 0, 0), (0, 0, 1), (5, 0, 0)) transforms a part containing the two points Pt1= (1,0,0) Pt2= (2,0,0) to Pt1 = (0, 6, 0) Pt2 = (0, 7, 0)

Returns:

An OdbInstance object.

Return type:

OdbInstance

Member Details:

NodeSet(name, nodes)[source]๏ƒ

This method creates a node set from an array of OdbMeshNode objects (for part instance-level sets) or from a sequence of arrays of OdbMeshNode objects (for assembly-level sets).

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • nodes (Sequence[OdbMeshNode]) โ€“ A sequence of OdbMeshNode objects. For example, for a part:nodes=part1.nodes[1:5]`For an assembly:`nodes=(instance1.nodes[6:7], instance2.nodes[1:5])

Returns:

An OdbSet object.

Return type:

OdbSet

class OdbPart(name, embeddedSpace, type)[source]๏ƒ

Bases: OdbPartBase

This method creates an OdbPart object. Nodes and elements are added to this object at a later stage.

Note

This function can be accessed by:

session.odbs[name].Part
Parameters:
  • name (str) โ€“ A String specifying the part name.

  • embeddedSpace (Literal[THREE_D, AXISYMMETRIC, TWO_D_PLANAR]) โ€“ A SymbolicConstant specifying the dimensionality of the Part object. Possible values are THREE_D, TWO_D_PLANAR, and AXISYMMETRIC.

  • type (Literal[DEFORMABLE_BODY, ANALYTIC_RIGID_SURFACE]) โ€“ A SymbolicConstant specifying the type of the Part object. Possible values are DEFORMABLE_BODY and ANALYTIC_RIGID_SURFACE.

Returns:

An OdbPart object.

Return type:

OdbPart

Member Details:

NodeSet(name, nodes)[source]๏ƒ

This method creates a node set from an array of OdbMeshNode objects (for part instance-level sets) or from a sequence of arrays of OdbMeshNode objects (for assembly-level sets).

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • nodes (Sequence[OdbMeshNode]) โ€“ A sequence of OdbMeshNode objects. For example, for a part:nodes=part1.nodes[1:5]`For an assembly:`nodes=(instance1.nodes[6:7], instance2.nodes[1:5])

Returns:

An OdbSet object.

Return type:

OdbSet

RigidBody(referenceNode, position=abaqusConstants.INPUT, isothermal=0, elset='', pinNodes='', tieNodes='', analyticSurface='')[source]๏ƒ

This method defines an OdbRigidBody on the part object.

Parameters:
  • referenceNode (str) โ€“ An OdbSet specifying the reference node assigned to the rigid body.

  • position (str, default: INPUT) โ€“ A symbolic constant specify if the location of the reference node is to be defined by the user. Possible values are INPUT and CENTER_OF_MASS. The default value is INPUT.

  • isothermal (Union[AbaqusBoolean, bool], default: 0) โ€“ A Boolean specifying an isothermal rigid body. The default value is OFF. This parameter is used only for a fully-coupled thermal stress analysis.

  • elset (str, default: '') โ€“ An OdbSet specifying an element set assigned to the rigid body.

  • pinNodes (str, default: '') โ€“ An OdbSet specifying pin-type nodes assigned to the rigid body.

  • tieNodes (str, default: '') โ€“ An OdbSet specifying tie-type nodes assigned to the rigid body.

  • analyticSurface (str, default: '') โ€“ An AnalyticSurface specifying the Analytic Rigid Surface assigned to the rigid body.

Return type:

None.

Raises:

OdbError โ€“ Rigid body definition requires a node set, If referenceNode is not a node set.

class SectionPoint(number, description)[source]๏ƒ

Bases: object

The SectionPoint object describes the location of a section point within a section category.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].parts[name].elementSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].parts[name].nodeSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].parts[name].surfaces[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.elementSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.instances[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.instances[name].elementSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.instances[name].nodeSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.instances[name].surfaces[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.nodeSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].rootAssembly.surfaces[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].sectionCategories[name].sectionPoints[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].locations[i].sectionPoints[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.elementSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.nodeSets[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.surfaces[name].elements[i].sectionCategory.sectionPoints[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].sectionPoint

This method creates a SectionPoint object.

Note

This function can be accessed by:

session.odbs[name].sectionCategories[name].SectionPoint
Parameters:
  • number (int) โ€“ An Int specifying the number of the section point. See Beam elements and Shell elements for the numbering convention.

  • description (str) โ€“ A String specifying the description of the section point.

Returns:

A SectionPoint object.

Return type:

SectionPoint

Member Details:

description: str[source]๏ƒ

A String specifying the description of the section point.

number: int[source]๏ƒ

An Int specifying the number of the section point. See Beam elements and Shell elements for the numbering convention.

class FieldLocation[source]๏ƒ

Bases: object

The FieldLocation object specifies locations for which data are available in the field. For example, a displacement field will have a FieldLocation object with a position member value of NODAL. The FieldLocation object has no constructor; it is created automatically as an element of the location member of a FieldOutput object by the addData method of a FieldOutput object.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].frames[i].fieldOutputs[name].locations[i]

Member Details:

position: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the position of the output in the element. Possible values are:NODAL, specifying the values calculated at the nodes.INTEGRATION_POINT, specifying the values calculated at the integration points.ELEMENT_NODAL, specifying the values obtained by extrapolating results calculated at the integration points.ELEMENT_FACE.CENTROID, specifying the value at the centroid obtained by extrapolating results calculated at the integration points.

sectionPoints: List[SectionPoint] = [][source]๏ƒ

A SectionPointArray object.

class FieldOutput(name: str, description: str, type: SymbolicConstant, componentLabels: tuple = (), validInvariants: SymbolicConstant | None = None, isEngineeringTensor: AbaqusBoolean | bool = OFF)[source]๏ƒ
class FieldOutput(field: FieldOutput, name: str = '', description: str = '')

Bases: object

A FieldOutput object contains field data for a specific output variable.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].frames[i].fieldOutputs[name]

Member Details:

addData(position: SymbolicConstant, instance: OdbInstance, labels: tuple)[source]๏ƒ
addData(field: FieldOutput)
addData(position: SymbolicConstant, set: OdbSet, data: tuple)
addData(*args, **kwargs)
componentLabels: tuple = ()[source]๏ƒ

A sequence of Strings specifying the labels for each component of the value. The length of the sequence must match the type. If type = TENSOR, the default value is name with the suffixes (โ€˜11โ€™, โ€˜22โ€™, โ€˜33โ€™, โ€˜12โ€™, โ€˜13โ€™, โ€˜23โ€™). If type = VECTOR, the default value is name with the suffixes (โ€˜1โ€™, โ€˜2โ€™, โ€˜3โ€™). If type = SCALAR, the default value is an empty sequence.

description: str[source]๏ƒ

) should not be used as a part of the field output description.

Type:

A String specifying the output variable. Colon (

dim: Optional[int] = None[source]๏ƒ

An Int specifying the dimension of vector or the first dimension (number of rows) of matrix.

dim2: Optional[int] = None[source]๏ƒ

An Int specifying the second dimension (number of columns) of matrix.

getConnectorFieldXformedToNodeA(deformationField=None)[source]๏ƒ

This method generates a new vector field containing the transformed component values of the parent connector field to the node A coordinate system. The new field will hold values for the same connector elements as the parent field. Some connection types such as Axial, Link, Slip Ring, and Radial Thrust require that the deformationField be specified.

Parameters:

deformationField (Optional[FieldOutput], default: None) โ€“ A FieldOutput object specifying the nodal displacement vectors required by moving coordinate systems to determine instantaneous configurations.

Returns:

A FieldOutput object.

Return type:

FieldOutput

Raises:

odbException โ€“ The getConnectorFieldXformedToNodeA method throws an exception if the field requires a deformationField and the argument is not supplied.

getScalarField(invariant: SymbolicConstant)[source]๏ƒ
getScalarField(componentLabel: str)
getScalarField(*args, **kwargs)
getSubset(position: SymbolicConstant, readOnly: AbaqusBoolean | bool = OFF)[source]๏ƒ
getSubset(region: OdbSet)
getSubset(localCoordSystem: Sequence[Sequence[float]])
getSubset(sectionPoint: SectionPoint)
getSubset(location: FieldLocation)
getSubset(region: OdbMeshElement)
getSubset(region: OdbMeshNode)
getSubset(region: FieldOutput)
getSubset(elementType: str)
getSubset(*args, **kwargs)
getTransformedField(datumCsys: str, projected22Axis: int | None = None, projectionTol: str = '')[source]๏ƒ
getTransformedField(datumCsys: str, deformationField: FieldOutput | None = None, projected22Axis: int | None = None)
getTransformedField(datumCsys: str, deformationField: FieldOutput | None = None, rotationField: FieldOutput | None = None)
getTransformedField(*args, **kwargs)
isComplex: Union[AbaqusBoolean, bool] = 0[source]๏ƒ

A Boolean specifying whether the data are complex.

isEngineeringTensor: Union[AbaqusBoolean, bool] = 0[source]๏ƒ

A Boolean specifying whether the field is an engineering tensor or not. Setting isEngineeringTensor to true makes a tensor field behave as a strain like quantity where the off-diagonal components of tensor are halved for invariants computation. This parameter applies only to tensor field outputs. The default value is OFF.

locations: List[FieldLocation] = [][source]๏ƒ

A FieldLocationArray object.

name: str[source]๏ƒ

A String specifying the output variable name.

setComponentLabels(componentLabels)[source]๏ƒ

This method sets the component labels for the FieldOutput object.

Parameters:

componentLabels (tuple) โ€“ A sequence of Strings specifying the labels for each component of the value. The length of the sequence must match the type. If type = TENSOR, the default value is name with the suffixes (โ€˜11โ€™, โ€˜22โ€™, โ€˜33โ€™, โ€˜12โ€™, โ€˜13โ€™, โ€˜23โ€™). If type = VECTOR, the default value is name with the suffixes (โ€˜1โ€™, โ€˜2โ€™, โ€˜3โ€™). If type = SCALAR, the default value is an empty sequence.

setDataType(type)[source]๏ƒ

This method sets the data type of a FieldOutput object.

Parameters:

type (Literal[TENSOR_2D_SURFACE, TENSOR_3D_SURFACE, VECTOR, TENSOR_3D_FULL, SCALAR, TENSOR_2D_PLANAR, TENSOR_3D_PLANAR]) โ€“ A SymbolicConstant specifying the output type. Possible values are SCALAR, VECTOR, TENSOR_3D_FULL, TENSOR_3D_PLANAR, TENSOR_3D_SURFACE, TENSOR_2D_PLANAR, and TENSOR_2D_SURFACE.

setValidInvariants(validInvariants)[source]๏ƒ

This method sets the invariants valid for the FieldOutput object.

Parameters:

validInvariants (Literal[MISES, MAX_PRINCIPAL, MIN_PRINCIPAL, MID_PRINCIPAL, MAGNITUDE, OUTOFPLANE_PRINCIPAL, TRESCA, MIN_INPLANE_PRINCIPAL, MAX_INPLANE_PRINCIPAL, INV3, PRESS]) โ€“

A sequence of SymbolicConstants specifying which invariants should be calculated for this field. An empty sequence indicates that no invariants are valid for this field. Possible values are:

  • MAGNITUDE

  • MISES

  • TRESCA

  • PRESS

  • INV3

  • MAX_PRINCIPAL

  • MID_PRINCIPAL

  • MIN_PRINCIPAL

  • MAX_INPLANE_PRINCIPAL

  • MIN_INPLANE_PRINCIPAL

  • OUTOFPLANE_PRINCIPAL

The default value is an empty sequence.

type: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the output type. Possible values are SCALAR, VECTOR, TENSOR_3D_FULL, TENSOR_3D_PLANAR, TENSOR_3D_SURFACE, TENSOR_2D_PLANAR, and TENSOR_2D_SURFACE.

validInvariants: SymbolicConstant[source]๏ƒ

A sequence of SymbolicConstants specifying which invariants should be calculated for this field. An empty sequence indicates that no invariants are valid for this field. Possible values are:MAGNITUDEMISESTRESCAPRESSINV3MAX_PRINCIPALMID_PRINCIPALMIN_PRINCIPALMAX_INPLANE_PRINCIPALMIN_INPLANE_PRINCIPALOUTOFPLANE_PRINCIPALThe default value is an empty sequence.

values: Optional[List[FieldValue]] = None[source]๏ƒ

A FieldValueArray object specifying the order of the objects in the array is determined by the Abaqus Scripting Interface; see the data argument to the addData method for a description of the order.

class OdbMeshElement[source]๏ƒ

Bases: object

OdbMeshElement objects are created with the part.addElements or rootAssembly.addElements methods.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].elements[i]
session.odbs[name].parts[name].elementSets[name].elements[i]
session.odbs[name].parts[name].nodeSets[name].elements[i]
session.odbs[name].parts[name].surfaces[name].elements[i]
session.odbs[name].rootAssembly.elements[i]
session.odbs[name].rootAssembly.elementSets[name].elements[i]
session.odbs[name].rootAssembly.instances[name].elements[i]
session.odbs[name].rootAssembly.instances[name].elementSets[name].elements[i]
session.odbs[name].rootAssembly.instances[name].nodeSets[name].elements[i]
session.odbs[name].rootAssembly.instances[name].surfaces[name].elements[i]
session.odbs[name].rootAssembly.nodeSets[name].elements[i]
session.odbs[name].rootAssembly.surfaces[name].elements[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.elements[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.elementSets[name].elements[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.nodeSets[name].elements[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.surfaces[name].elements[i]

Member Details:

connectivity: Optional[int] = None[source]๏ƒ

A tuple of Ints specifying the element connectivity. For connector elements connected to ground, the other node is repeated in the connectivity data. The position of the ground node cannot be ascertained. This is a limitation. It is important to note the difference with MeshElement object of MDB where the connectivity is node indices instead of node labels.

getNormal(faceIndex, stepName='', frameValue='', match=abaqusConstants.CLOSEST)[source]๏ƒ

This method returns the normal direction for the element face.

New in version 2017: The getNormal method was added.

Parameters:
  • faceIndex (str) โ€“ The value of faceIndex is 0 for a shell element and can range from 0 to 5 for a solid element.

  • stepName (str, default: '') โ€“ Name of the step.

  • frameValue (str, default: '') โ€“ A Double specifying the value at which the frame is required. frameValue can be the total fime or frequency.

  • match (Literal[BEFORE, EXACT, AFTER, CLOSEST], default: CLOSEST) โ€“ A SymbolicConstant specifying which frame to return if there is no frame at the exact frame value. Possible values are CLOSEST, BEFORE, AFTER, and EXACT. The default value is CLOSEST.When match = CLOSEST, Abaqus returns the closest frame. If the frame value requested is exactly halfway between two frames, Abaqus returns the frame after the value.When match = EXACT, Abaqus raises an exception if the exact frame value does not exist.

Returns:

A tuple of 3 floats representing the unit normal vector. If the element face is collapsed such that a normal cannot be computed, a zero-length vector is returned.

Raises:
  • OdbError โ€“ Frame not found, If the exact frame is not found.

  • OdbError โ€“ Step is not present in the ODB, If the step name is not found.

  • OdbError โ€“ If frameValue is not provided and stepName is empty.

instanceName: str = ''[source]๏ƒ

A String specifying the instance name.

instanceNames: tuple = ()[source]๏ƒ

A tuple of Strings specifying the instance names for nodes in the element connectivity.

label: Optional[int] = None[source]๏ƒ

An Int specifying the element label.

sectionCategory: Optional[SectionCategory] = None[source]๏ƒ

A SectionCategory object specifying the element section properties.

type: str = ''[source]๏ƒ

A String specifying the element type.

class OdbMeshNode[source]๏ƒ

Bases: object

OdbMeshNode objects are created with the part.addNodes method.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].nodes[i]
session.odbs[name].parts[name].nodeSets[name].nodes[i]
session.odbs[name].parts[name].surfaces[name].nodes[i]
session.odbs[name].rootAssembly.instances[name].nodes[i]
session.odbs[name].rootAssembly.instances[name].nodeSets[name].nodes[i]
session.odbs[name].rootAssembly.instances[name].surfaces[name].nodes[i]
session.odbs[name].rootAssembly.nodes[i]
session.odbs[name].rootAssembly.nodeSets[name].nodes[i]
session.odbs[name].rootAssembly.surfaces[name].nodes[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.nodes[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.nodeSets[name].nodes[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.surfaces[name].nodes[i]

Member Details:

coordinates: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying the nodal coordinates in the global Cartesian coordinate system.

label: Optional[int] = None[source]๏ƒ

An Int specifying the node label.

class FieldValue[source]๏ƒ

Bases: object

The FieldValue object represents the field data at a point. The FieldValue object has no constructor; it is created by the Odb object when data are added to the FieldOutput object using the addData method. For faster, bulk-data access, see Using bulk data access to an output database.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i]

Member Details:

conjugateData: tuple = ()[source]๏ƒ

A tuple of Floats specifying data in the form described by type. If type = TENSOR or VECTOR, conjugateData is a sequence containing the components. If the underlying data are in double precision, an exception will be thrown.

conjugateDataDouble: tuple = ()[source]๏ƒ

A tuple of Floats specifying data in the form described by type. If type = TENSOR or VECTOR, conjugateData is a sequence containing the components. If the underlying data are in single precision, an exception will be thrown.

data: tuple = ()[source]๏ƒ

A tuple of Floats specifying data in the form described by type. If type = TENSOR or VECTOR, data is a sequence containing the components. If the underlying data are in double precision an exception will be thrown.

dataDouble: tuple = ()[source]๏ƒ

A tuple of Floats specifying data in the form described by type. If type = TENSOR or VECTOR, data is a sequence containing the components. If the underlying data are in single precision, an exception will be thrown.

elementLabel: Optional[int] = None[source]๏ƒ

An Int specifying the element label of the element containing the location. elementLabel is available only if position = INTEGRATION_POINT, CENTROID, ELEMENT_NODAL, or ELEMENT_FACE.

face: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the face of the element. face is available only if position = ELEMENT_FACE.

instance: OdbInstance = <abaqus.Odb.OdbInstance.OdbInstance object>[source]๏ƒ

An OdbInstance object specifying the part to which the labels belong.

integrationPoint: Optional[int] = None[source]๏ƒ

An Int specifying the integration point in the element. integrationPoint is available only if position = INTEGRATION_POINT.

inv3: Optional[float] = None[source]๏ƒ

A Float specifying the calculated third stress invariant. The value is valid only when the validInvariants member includes INV3; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

localCoordSystem: tuple = ()[source]๏ƒ

A tuple of tuples of Floats specifying the 3 x 3 matrix of Floats specifying the direction cosines of the local coordinate system (the rotation from global to local). Each sequence represents a row in the direction cosine matrix. localCoordSystem is available for TENSOR data written in a local coordinate system. It is also available for VECTOR data for connector element outputs. For connector element outputs the rotation is from local to global. If the underlying data are in double precision, an exception will be thrown.

localCoordSystemDouble: tuple = ()[source]๏ƒ

A tuple of tuples of Floats specifying the 3 x 3 matrix of Doubles specifying the direction cosines of the local coordinate system (the rotation from global to local). Each sequence represents a row in the direction cosine matrix. localCoordSystemDouble is available for TENSOR data written in a local coordinate system. It is also available for VECTOR data for connector element outputs. For connector element outputs the rotation is from local to global. If the underlying data are in single precision, an exception will be thrown.

magnitude: Optional[float] = None[source]๏ƒ

A Float specifying the length or magnitude of the vector. magnitude is valid only when type = VECTOR.

maxInPlanePrincipal: Optional[float] = None[source]๏ƒ

A Float specifying the maximum principal in-plane stress. The value is valid only when the validInvariants member includes MAX_INPLANE_PRINCIPAL; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

maxPrincipal: Optional[float] = None[source]๏ƒ

A Float specifying the calculated maximum principal stress. The value is valid only when the validInvariants member includes MAX_PRINCIPAL; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

midPrincipal: Optional[float] = None[source]๏ƒ

A Float specifying the calculated intermediate principal stress. The value is valid only when the validInvariants member includes MID_PRINCIPAL; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

minInPlanePrincipal: Optional[float] = None[source]๏ƒ

A Float specifying the calculated minimum principal in-plane stress. The value is valid only when the validInvariants member includes MIN_INPLANE_PRINCIPAL; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

minPrincipal: Optional[float] = None[source]๏ƒ

A Float specifying the minimum principal stress. The value is valid only when the validInvariants member includes MIN_PRINCIPAL; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

mises: Optional[float] = None[source]๏ƒ

A Float specifying the calculated von Mises stress. The value is valid only when the validInvariants member includes MISES; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

nodeLabel: Optional[int] = None[source]๏ƒ

An Int specifying the node label of the node containing the location. nodelabel is available only if position = ELEMENT_NODAL or NODAL.

outOfPlanePrincipal: Optional[float] = None[source]๏ƒ

A Float specifying the calculated principal out-of-plane stress. The value is valid only when the validInvariants member includes OUTOFPLANE_PRINCIPAL; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

position: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the position of the output in the element. Possible values are:

  • NODAL, specifying the values calculated at the nodes.

  • INTEGRATION_POINT, specifying the values calculated at the integration points.

  • ELEMENT_NODAL, specifying the values obtained by extrapolating results calculated at the integration points.

  • ELEMENT_FACE, specifying the results obtained for surface variables such as cavity radiation that are defined for the surface facets of an element.

  • CENTROID, specifying the value at the centroid obtained by extrapolating results calculated at the integration points.

precision: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the precision of the output in the element. Possible values are:

  • SINGLE_PRECISION, specifying that the output values are in single precision.

  • DOUBLE_PRECISION, specifying that the output values are in double precision.

press: Optional[float] = None[source]๏ƒ

A Float specifying the calculated pressure stress. The value is valid only when the validInvariants member includes PRESS; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

sectionPoint: Optional[SectionPoint] = None[source]๏ƒ

A SectionPoint object.

tresca: Optional[float] = None[source]๏ƒ

A Float specifying the calculated Tresca stress. The value is valid only when the validInvariants member includes TRESCA; otherwise, the value is indeterminate. Conjugate data will be ignored in invariant calculation.

type: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the output type. Possible values are SCALAR, VECTOR, TENSOR_3D_FULL, TENSOR_3D_PLANAR, TENSOR_3D_SURFACE, TENSOR_2D_PLANAR, and TENSOR_2D_SURFACE.

class HistoryOutput(name, description, type, validInvariants=None)[source]๏ƒ

Bases: object

The HistoryOutput object contains the history output at a point for the specified variable.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].historyRegions[name].historyOutputs[name]

This method creates a HistoryOutput object.

Note

This function can be accessed by:

session.odbs[name].steps[name].historyRegions[name].HistoryOutput
Parameters:
  • name (str) โ€“ A String specifying the output variable name.

  • description (str) โ€“ A String specifying the output variable.

  • type (Literal[SCALAR]) โ€“ A SymbolicConstant specifying the output type. Only SCALAR is currently supported.

  • validInvariants (Optional[Literal[MISES, MAX_PRINCIPAL, MIN_PRINCIPAL, MID_PRINCIPAL, MAGNITUDE, TRESCA, INV3, PRESS]], default: None) โ€“ A sequence of SymbolicConstants specifying which invariants should be calculated for this field. Possible values are MAGNITUDE, MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL, MID_PRINCIPAL, and MIN_PRINCIPAL. The default value is an empty sequence.

Returns:

A HistoryOutput object.

Return type:

HistoryOutput

Member Details:

addData(frame: str, value: str)[source]๏ƒ
addData(frame: tuple, value: tuple)
addData(data: tuple)
addData(*args, **kwargs)
conjugateData: Optional[float] = None[source]๏ƒ

A tuple of pairs of Floats specifying the imaginary portion of a specified complex variable at each frame value (time, frequency, or mode). The pairs have the form (frameValue, value).

data: Optional[float] = None[source]๏ƒ

A tuple of pairs of Floats specifying the pairs (frameValue, value) where frameValue is either time, frequency, or mode and value is the value of the specified variable at frameValue. (This value depends on the type of the variable.)

description: str[source]๏ƒ

A String specifying the output variable.

name: str[source]๏ƒ

A String specifying the output variable name.

type: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the output type. Only SCALAR is currently supported.

validInvariants: SymbolicConstant[source]๏ƒ

A sequence of SymbolicConstants specifying which invariants should be calculated for this field. Possible values are MAGNITUDE, MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL, MID_PRINCIPAL, and MIN_PRINCIPAL. The default value is an empty sequence.

class HistoryPoint(node: OdbMeshNode)[source]๏ƒ
class HistoryPoint(element: OdbMeshElement, ipNumber: int = 0, sectionPoint: SectionPoint | None = None, face: SymbolicConstant = FACE_UNKNOWN, node: OdbMeshNode | None = None)
class HistoryPoint(region: OdbSet)
class HistoryPoint(assembly: OdbAssembly)
class HistoryPoint(instance: OdbInstance)

Bases: object

The HistoryPoint object specifies the point at which history data will be collected. The HistoryPoint object is a temporary object used as an argument to the HistoryRegion method.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].historyRegions[name].point

Member Details:

assembly: OdbAssembly = <abaqus.Odb.OdbAssembly.OdbAssembly object>[source]๏ƒ

An OdbAssembly object specifying the assembly for which the data are to be collected.

element: OdbMeshElement = <abaqus.Odb.OdbMeshElement.OdbMeshElement object>[source]๏ƒ

An OdbMeshElement object specifying the element for which the data are to be collected.

face: SymbolicConstant = 'FACE_UNKNOWN'[source]๏ƒ

A SymbolicConstant specifying the element face. This argument is used to define a history output position of ELEMENT_FACE or ELEMENT_FACE_INTEGRATION_POINT. Possible values are:

  • FACE_UNKOWN, specifying this value indicates that no value has been specified.

  • FACE1, specifying this value indicates that element face 1 has been specified.

  • FACE2, specifying this value indicates that element face 2 has been specified.

  • FACE3, specifying this value indicates that element face 3 has been specified.

  • FACE4, specifying this value indicates that element face 4 has been specified.

  • FACE5, specifying this value indicates that element face 5 has been specified.

  • FACE6, specifying this value indicates that element face 6 has been specified.

  • SIDE1, specifying this value indicates that element side 1 has been specified.

  • SIDE2, specifying this value indicates element side 2 has been specified.

  • END1, specifying this value indicates that element end 1 has been specified.

  • END2, specifying this value indicates that element end 2 has been specified.

  • END3, specifying this value indicates that element end 3 has been specified.

The default value is FACE_UNKNOWN.

instance: OdbInstance = <abaqus.Odb.OdbInstance.OdbInstance object>[source]๏ƒ

An OdbInstance object specifying the instance for which the data are to be collected.

ipNumber: int = 0[source]๏ƒ

An Int specifying the integration point. This argument is used to define a history output position of INTEGRATION_POINT or ELEMENT_FACE_INTEGRATION_POINT. The default value is 0.

node: OdbMeshNode[source]๏ƒ

An OdbMeshNode object specifying the node for which the data are to be collected.

position: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the result position of the history point. Possible values are:

  • NODAL, specifying the values calculated at the nodes.

  • ELEMENT_NODAL, specifying the values obtained by extrapolating results calculated at the integration points.

  • INTEGRATION_POINT, specifying the values calculated at the integration points.

  • ELEMENT_FACE, specifying the results obtained for surface variables such as cavity radiation that are defined for the surface facets of an element.

  • ELEMENT_FACE_INTEGRATION_POINT, specifying the results obtained for surface variables such as cavity radiation that are defined for the surface facets of an element when the surface facets have integration points.

  • WHOLE_ELEMENT, specifying the results obtained for whole element variables.

  • WHOLE_REGION, specifying the results for an entire region of the model.

  • WHOLE_PART_INSTANCE, specifying the results for an entire part instance of the model.

  • WHOLE_MODEL, specifying the results for the entire model.

region: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying the region for which the data are to be collected.

sectionPoint: SectionPoint[source]๏ƒ

A SectionPoint object.

class OdbAssembly[source]๏ƒ

Bases: OdbAssemblyBase

Member Details:

DatumCsys(name, datumCsys)[source]๏ƒ

This method copies oneOdbDatumCsys object to a new OdbDatumCsys object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsys
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • datumCsys (OdbDatumCsys) โ€“ An OdbDatumCsys object specifying the object to be copied.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysBy6dofNode(name, coordSysType, origin)[source]๏ƒ

A datum coordinate system created with this method results in a system that follows the position of a node. The node location defines the origin of the datum coordinate system. The rotational displacement (UR1, UR2, UR3) of the node defines the orientation of the coordinate system axes. Results, such as those for displacement, are resolved into the orientation of the datum coordinate system without regard to the position of its origin. The last argument is given in the form of an OdbMeshNode object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysBy6dofNode
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • origin (OdbMeshNode) โ€“ An OdbMeshNode object specifying the origin of the datum coordinate system.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysByThreeCircNodes(name, coordSysType, node1Arc, node2Arc, node3Arc)[source]๏ƒ

This method is convenient to use where there are no nodes along the axis of a hollow cylinder or at the center of a hollow sphere. The three nodes that you provide as arguments determine a circle in space. The center of the circle is the origin of the datum coordinate system. The normal to the circle is parallel to the zz-axis of a cylindrical coordinate system or to the ฯ•ฯ•-axis of a spherical coordinate system. The line from the origin to the first node defines the rr-axis.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreeCircNodes
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • node1Arc (OdbMeshNode) โ€“ An OdbMeshNode object that lies on the circular arc.

  • node2Arc (OdbMeshNode) โ€“ An OdbMeshNode object that lies on the circular arc.

  • node3Arc (OdbMeshNode) โ€“ An OdbMeshNode object that lies on the circular arc.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysByThreeNodes(name, coordSysType, origin, point1, point2)[source]๏ƒ

This method creates an OdbDatumCsys object using the coordinates of three OdbMeshNode objects. A datum coordinate system created with this method results in a system that follows the position of the three nodes. Results, such as those for displacement, are resolved into the orientation of the datum coordinate system without regard to the position of its origin. The last three arguments are given in the form of an OdbMeshNode object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreeNodes
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • origin (OdbMeshNode) โ€“ An OdbMeshNode object specifying a node at the origin of the datum coordinate system.

  • point1 (OdbMeshNode) โ€“ An OdbMeshNode object specifying a node on the local 1- or rr-axis.

  • point2 (OdbMeshNode) โ€“ An OdbMeshNode object specifying a node in the 1-2 or rr-ฮธฮธ plane.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysByThreePoints(name, coordSysType, origin, point1, point2)[source]๏ƒ

This method creates an OdbDatumCsys object using three points. A datum coordinate system created with this method results in a fixed system.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreePoints
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • origin (tuple) โ€“ A sequence of Floats specifying the coordinates of the origin of the datum coordinate system.

  • point1 (tuple) โ€“ A sequence of Floats specifying the coordinates of a point on the local 1- or rr-axis.

  • point2 (tuple) โ€“ A sequence of Floats specifying the coordinates of a point in the 1-2 or rr-ฮธฮธ plane.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

Instance(name, object, localCoordSystem=())[source]๏ƒ

This method creates an OdbInstance object from an OdbPart object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.Instance
Parameters:
  • name (str) โ€“ A String specifying the instance name.

  • object (OdbPart) โ€“ An OdbPart object.

  • localCoordSystem (tuple, default: ()) โ€“ A sequence of sequences of three Floats specifying the rotation and translation of the part instance in the global Cartesian coordinate system. The first three sequences specify the new local coordinate system with its center at the origin.The first sequence specifies a point on the 1-axis.The second sequence specifies a point on the 2-axis.The third sequence specifies a point on the 3-axis.The fourth sequence specifies the translation of the local coordinate system from the origin to its intended location.For example, the following sequence moves a part 10 units in the X direction with no rotation:localCoordSystem = ((1, 0, 0), (0, 1, 0), (0, 0, 1), (10, 0, 0))`The following sequence moves a part 5 units in the **X** direction with rotation: `localCoordSystem = ((0, 1, 0), (1, 0, 0), (0, 0, 1), (5, 0, 0))`transforms a part containing the two points`Pt1= (1,0,0) Pt2= (2,0,0) to Pt1 = (0, 6, 0) Pt2 = (0, 7, 0)

Returns:

An OdbInstance object.

Return type:

OdbInstance

NodeSet(name, nodes)[source]๏ƒ

This method creates a node set from an array of OdbMeshNode objects (for part instance-level sets) or from a sequence of arrays of OdbMeshNode objects (for assembly-level sets).

Note

This function can be accessed by:

session.odbs[name].parts[name].NodeSet
session.odbs[name].rootAssembly.instances[name].NodeSet
session.odbs[name].rootAssembly.NodeSet
Parameters:
  • name (str) โ€“ A String specifying the name of the set and the repository key.

  • nodes (Sequence[OdbMeshNode]) โ€“ A sequence of OdbMeshNode objects. For example, for a part:nodes=part1.nodes[1:5]`For an assembly:`nodes=(instance1.nodes[6:7], instance2.nodes[1:5])

Returns:

An OdbSet object.

Return type:

OdbSet

RigidBody(referenceNode, position=abaqusConstants.INPUT, isothermal=1, elements=<abaqus.Odb.OdbSet.OdbSet object>, tieNodes=<abaqus.Odb.OdbSet.OdbSet object>, pinNodes=<abaqus.Odb.OdbSet.OdbSet object>, analyticSurface=None)[source]๏ƒ

This method creates a OdbRigidBody object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.instances[name].RigidBody
session.odbs[name].rootAssembly.RigidBody
Parameters:
  • referenceNode (OdbSet) โ€“ An OdbSet object specifying the reference node set associated with the rigid body.

  • position (Literal[INPUT, CENTER_OF_MASS], default: INPUT) โ€“ A SymbolicConstant specifying the specific location of the OdbRigidBody reference node relative to the rest of the rigid body. Possible values are INPUT and CENTER_OF_MASS. The default value is INPUT.

  • isothermal (Union[AbaqusBoolean, bool], default: 1) โ€“ A Boolean specifying specify whether the OdbRigidBody can have temperature gradients or be isothermal. This is used only for fully coupled thermal-stress analysis The default value is ON.

  • elements (OdbSet, default: <abaqus.Odb.OdbSet.OdbSet object at 0x7f5b3e8c3910>) โ€“ An OdbSet object specifying the element set whose motion is governed by the motion of rigid body reference node.

  • tieNodes (OdbSet, default: <abaqus.Odb.OdbSet.OdbSet object at 0x7f5b3e87bed0>) โ€“ An OdbSet object specifying the node set which have both translational and rotational degrees of freedom associated with the rigid body.

  • pinNodes (OdbSet, default: <abaqus.Odb.OdbSet.OdbSet object at 0x7f5b3e6fb690>) โ€“ An OdbSet object specifying the node set which have only translational degrees of freedom associated with the rigid body.

  • analyticSurface (Optional[AnalyticSurface], default: None) โ€“ An AnalyticSurface object specifying the analytic surface whose motion is governed by the motion of rigid body reference node.

Returns:

An OdbRigidBody object.

Return type:

OdbRigidBody

class HistoryRegion(name, description, point, loadCase=None)[source]๏ƒ

Bases: object

The HistoryRegion object contains history data for a single location in the model.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].historyRegions[name]

This method creates a HistoryRegion object.

Note

This function can be accessed by:

session.odbs[name].steps[name].HistoryRegion
Parameters:
  • name (str) โ€“ A String specifying the name of the HistoryRegion object.

  • description (str) โ€“ A String specifying the description of the HistoryRegion object.

  • point (HistoryPoint) โ€“ A HistoryPoint object specifying the point to which the history data refer.

  • loadCase (Optional[str], default: None) โ€“ None or an OdbLoadCase object specifying the load case associated with the HistoryRegion object. The default value is None.

Returns:

A HistoryRegion object.

Return type:

HistoryRegion

Member Details:

HistoryOutput(name, description, type, validInvariants=None)[source]๏ƒ

This method creates a HistoryOutput object.

Note

This function can be accessed by:

session.odbs[name].steps[name].HistoryRegion
Parameters:
  • name (str) โ€“ A String specifying the output variable name.

  • description (str) โ€“ A String specifying the output variable.

  • type (Literal[SCALAR]) โ€“ A SymbolicConstant specifying the output type. Only SCALAR is currently supported.

  • validInvariants (Optional[Literal[MISES, MAX_PRINCIPAL, MIN_PRINCIPAL, MID_PRINCIPAL, MAGNITUDE, TRESCA, INV3, PRESS]], default: None) โ€“ A sequence of SymbolicConstants specifying which invariants should be calculated for this field. Possible values are MAGNITUDE, MISES, TRESCA, PRESS, INV3, MAX_PRINCIPAL, MID_PRINCIPAL, and MIN_PRINCIPAL. The default value is an empty sequence.

Returns:

A HistoryOutput object.

Return type:

HistoryOutput

description: str[source]๏ƒ

A String specifying the description of the HistoryRegion object.

getSubset(variableName: str)[source]๏ƒ
getSubset(start: float)
getSubset(start: float, end: float)
getSubset(*args, **kwargs)
historyOutputs: dict[str, HistoryOutput] = {}[source]๏ƒ

A repository of HistoryOutput objects.

loadCase: Optional[str] = None[source]๏ƒ

None or an OdbLoadCase object specifying the load case associated with the HistoryRegion object. The default value is None.

name: str[source]๏ƒ

A String specifying the name of the HistoryRegion object.

point: HistoryPoint[source]๏ƒ

A HistoryPoint object specifying the point to which the history data refer.

position: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the position of the history output. Possible values are NODAL, INTEGRATION_POINT, WHOLE_ELEMENT, WHOLE_REGION, and WHOLE_MODEL.

class JobData[source]๏ƒ

Bases: object

The JobData object describes the context in which the analysis was run.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].jobData

Member Details:

analysisCode: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the analysis code. Possible values are ABAQUS_STANDARD, ABAQUS_EXPLICIT, and UNKNOWN_ANALYSIS_CODE.

creationTime: str = ''[source]๏ƒ

A String specifying the date and time at which the analysis was run.

machineName: str = ''[source]๏ƒ

A String specifying the name of the machine on which the analysis was run.

modificationTime: str = ''[source]๏ƒ

A String specifying the date and time at which the database was last modified.

name: str = ''[source]๏ƒ

A String specifying the name of the job.

precision: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the precision. Only SINGLE_PRECISION is currently supported. Possible values are DOUBLE_PRECISION and SINGLE_PRECISION.

productAddOns: str = ''[source]๏ƒ

A String specifying an odb_Sequence of productAddOns. Possible values are AQUA, DESIGN, BIORID, CEL, SOLITER, and CAVPARALLEL.

version: str = ''[source]๏ƒ

A String specifying the release of the analysis code.

class OdbStep(name, description, domain, timePeriod=0, previousStepName='', procedure='', totalTime=None)[source]๏ƒ

Bases: OdbStepBase

This method creates an OdbStep object.

Note

This function can be accessed by:

session.odbs[name].Step
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • description (str) โ€“ A String specifying the step description.

  • domain (Literal[TIME, FREQUENCY, ARC_LENGTH, MODAL]) โ€“ A SymbolicConstant specifying the domain of the step. Possible values are TIME, FREQUENCY, ARC_LENGTH, and MODAL.The type of OdbFrame object that can be created for this step is based on the value of the domain argument.

  • timePeriod (float, default: 0) โ€“ A Float specifying the time period of the step. timePeriod is required if domain = TIME; otherwise, this argument is not applicable. The default value is 0.0.

  • previousStepName (str, default: '') โ€“ A String specifying the preceding step. If previousStepName is the empty string, the last step in the repository is used. If previousStepName is not the last step, this will result in a change to the previousStepName member of the step that was in that position. A special value โ€˜Initialโ€™ refers to the internal initial model step and may be used exclusively for inserting a new step at the first position before any other existing steps. The default value is an empty string.

  • procedure (str, default: '') โ€“

    A String specifying the step procedure. The default value is an empty string. The following is the list of valid procedures:

    • *ANNEAL

    • *BUCKLE

    • *COMPLEX FREQUENCY

    • *COUPLED TEMPERATURE-DISPLACEMENT

    • *COUPLED TEMPERATURE-DISPLACEMENT, CETOL

    • *COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE

    • *COUPLED THERMAL-ELECTRICAL, STEADY STATE

    • *COUPLED THERMAL-ELECTRICAL

    • *COUPLED THERMAL-ELECTRICAL, DELTMX

    • *DYNAMIC

    • *DYNAMIC, DIRECT

    • *DYNAMIC, EXPLICIT

    • *DYNAMIC, SUBSPACE

    • *DYNAMIC TEMPERATURE-DISPLACEMENT, EXPLICT

    • *ELECTROMAGNETIC, HIGH FREQUENCY, TIME HARMONIC

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN, DIRECT

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME HARMONIC

    • *FREQUENCY

    • *GEOSTATIC

    • *HEAT TRANSFER

    • *HEAT TRANSFER, DELTAMX=__

    • *HEAT TRANSFER, STEADY STATE

    • *MAGNETOSTATIC

    • *MAGNETOSTATIC, DIRECT

    • *MASS DIFFUSION

    • *MASS DIFFUSION, DCMAX=

    • *MASS DIFFUSION, STEADY STATE

    • *MODAL DYNAMIC

    • *RANDOM RESPONSE

    • *RESPONSE SPECTRUM

    • *SOILS

    • *SOILS, CETOL/UTOL

    • *SOILS, CONSOLIDATION

    • *SOILS, CONSOLIDATION, CETOL/UTOL

    • *STATIC

    • *STATIC, DIRECT

    • *STATIC, RIKS

    • *STEADY STATE DYNAMICS

    • *STEADY STATE TRANSPORT

    • *STEADY STATE TRANSPORT, DIRECT

    • *STEP PERTURBATION, *STATIC

    • *SUBSTRUCTURE GENERATE

    • *USA ADDDED MASS GENERATION

    • *VISCO

  • totalTime (Optional[float], default: None) โ€“ A Float specifying the analysis time spend in all the steps previous to this step. The default value is โˆ’1.0.

Returns:

An OdbStep object.

Return type:

OdbStep

Raises:

ValueError โ€“ previousStepName is invalid, If previousStepName is invalid.

Member Details:

Frame(incrementNumber: int, frameValue: float, description: str = '')[source]๏ƒ
Frame(mode: int, frequency: float, description: str = '')
Frame(loadCase: OdbLoadCase, description: str = '', frequency: float = 0)
Frame(*args, **kwargs)
HistoryRegion(name, description, point, loadCase=None)[source]๏ƒ

This method creates a HistoryRegion object.

Note

This function can be accessed by:

session.odbs[name].steps[name].HistoryRegion
Parameters:
  • name (str) โ€“ A String specifying the name of the HistoryRegion object.

  • description (str) โ€“ A String specifying the description of the HistoryRegion object.

  • point (HistoryPoint) โ€“ A HistoryPoint object specifying the point to which the history data refer.

  • loadCase (Optional[str], default: None) โ€“ None or an OdbLoadCase object specifying the load case associated with the HistoryRegion object. The default value is None.

Returns:

A HistoryRegion object.

Return type:

HistoryRegion

LoadCase(name)[source]๏ƒ

This method creates an OdbLoadCase object.

Note

This function can be accessed by:

session.odbs[name].steps[name].LoadCase
Parameters:

name (str) โ€“ A String specifying the name of the OdbLoadCase object.

Returns:

An OdbLoadCase object.

Return type:

OdbLoadCase

class SectionCategory(name, description)[source]๏ƒ

Bases: object

The SectionCategory object is used to group regions of the model with like sections. Section definitions that contain the same number of section points or integration points are grouped together. To access data for a particular section definition, use the individual Section objects in the output database. For more information, see Beam Section profile commands and Section commands.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].elements[i].sectionCategory
session.odbs[name].parts[name].elementSets[name].elements[i].sectionCategory
session.odbs[name].parts[name].nodeSets[name].elements[i].sectionCategory
session.odbs[name].parts[name].surfaces[name].elements[i].sectionCategory
session.odbs[name].rootAssembly.elements[i].sectionCategory
session.odbs[name].rootAssembly.elementSets[name].elements[i].sectionCategory
session.odbs[name].rootAssembly.instances[name].elements[i].sectionCategory
session.odbs[name].rootAssembly.instances[name].elementSets[name].elements[i].sectionCategory
session.odbs[name].rootAssembly.instances[name].nodeSets[name].elements[i].sectionCategory
session.odbs[name].rootAssembly.instances[name].surfaces[name].elements[i].sectionCategory
session.odbs[name].rootAssembly.nodeSets[name].elements[i].sectionCategory
session.odbs[name].rootAssembly.surfaces[name].elements[i].sectionCategory
session.odbs[name].sectionCategories[name]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.elements[i].sectionCategory
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.elementSets[name].elements[i].sectionCategory
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.nodeSets[name].elements[i].sectionCategory
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.surfaces[name].elements[i].sectionCategory

This method creates a SectionCategory object.

Note

This function can be accessed by:

session.odbs[name].SectionCategory
Parameters:
  • name (str) โ€“ A String specifying the name of the category.

  • description (str) โ€“ A String specifying the description of the category.

Returns:

A SectionCategory object.

Return type:

SectionCategory

Member Details:

SectionPoint(number, description)[source]๏ƒ

This method creates a SectionPoint object.

Note

This function can be accessed by:

session.odbs[name].SectionCategory
Parameters:
  • number (int) โ€“ An Int specifying the number of the section point. See Beam elements and Shell elements for the numbering convention.

  • description (str) โ€“ A String specifying the description of the section point.

Returns:

A SectionPoint object.

Return type:

SectionPoint

description: str[source]๏ƒ

A String specifying the description of the category.

name: str[source]๏ƒ

A String specifying the name of the category.

sectionPoints: List[SectionPoint] = [][source]๏ƒ

A SectionPointArray object.

class OdbAssemblyBase[source]๏ƒ

Bases: object

The OdbAssembly object has no constructor; it is created automatically when an Odb object is created. Abaqus creates the rootAssembly member when an Odb object is created.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].rootAssembly

Member Details:

ConnectorOrientation(region, localCsys1=None, axis1=abaqusConstants.AXIS_1, angle1=0, orient2sameAs1=0, localCsys2=None, axis2=abaqusConstants.AXIS_1, angle2=0)[source]๏ƒ

This method assigns a connector orientation to a connector region.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region.

  • localCsys1 (Optional[OdbDatumCsys], default: None) โ€“ An OdbDatumCsys object specifying the first connector node local coordinate system or None, indicating the global coordinate system.

  • axis1 (Literal[AXIS_1, AXIS_3, AXIS_2], default: AXIS_1) โ€“ A SymbolicConstant specifying the axis of a cylindrical or spherical datum coordinate system about which an additional rotation of the first connector node is applied. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

  • angle1 (float, default: 0) โ€“ A Float specifying the angle of the additional rotation about the first connector node axis. The default value is 0.0.

  • orient2sameAs1 (Union[AbaqusBoolean, bool], default: 0) โ€“ A Boolean specifying whether the same orientation settings should be used for the second node of the connector. The default value is OFF.

  • localCsys2 (Optional[OdbDatumCsys], default: None) โ€“ An OdbDatumCsys object specifying the second connector node local coordinate system or None, indicating the global coordinate system.

  • axis2 (Literal[AXIS_1, AXIS_3, AXIS_2], default: AXIS_1) โ€“ A SymbolicConstant specifying the axis of a cylindrical or spherical datum coordinate system about which an additional rotation of the second connector node is applied. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

  • angle2 (float, default: 0) โ€“ A Float specifying the angle of the additional rotation about the second connector node axis. The default value is 0.0.

Raises:

OdbError โ€“ Connector orientation assignment requires element set, If region is not an element set.

RigidBody(referenceNode, position=abaqusConstants.INPUT, isothermal=0, elset='', pinNodes='', tieNodes='', analyticSurface='')[source]๏ƒ

This method defines an OdbRigidBody on the assembly.

Parameters:
  • referenceNode (str) โ€“ An OdbSet specifying the reference node assigned to the rigid body.

  • position (str, default: INPUT) โ€“ A symbolic constant specify if the location of the reference node is to be defined by the user. Possible values are INPUT and CENTER_OF_MASS. The default value is INPUT.

  • isothermal (Union[AbaqusBoolean, bool], default: 0) โ€“ A Boolean specifying an isothermal rigid body. The default value is OFF. This parameter is used only for a fully coupled thermal stress analysis.

  • elset (str, default: '') โ€“ An OdbSet specifying an element set assigned to the rigid body.

  • pinNodes (str, default: '') โ€“ An OdbSet specifying pin-type nodes assigned to the rigid body.

  • tieNodes (str, default: '') โ€“ An OdbSet specifying tie-type nodes assigned to the rigid body.

  • analyticSurface (str, default: '') โ€“ An AnalyticSurface specifying the Analytic Rigid Surface assigned to the rigid body.

Raises:

OdbError โ€“ Rigid body definition requires a node set, If referenceNode is not a node set

SectionAssignment(region, section)[source]๏ƒ

This method is used to assign a section on an assembly or part. Section assignment on the assembly is limited to the connector elements only.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region.

  • section (Section) โ€“ A Section object.

Raises:

OdbError โ€“ Section assignment requires element set, If region is not an element set.

addElements(labels, connectivity, instanceNames, type, elementSetName='', sectionCategory=None)[source]๏ƒ

This method is used to define elements using nodes defined at the OdbAssembly and/or OdbInstance level. For connector elements connected to ground, specify the lone node in the connectivity. The position of the ground node cannot be specified. This is a limitation. Warning:Adding elements not in ascending order of their labels may cause Abaqus/Viewer to plot contours incorrectly.

Parameters:
  • labels (tuple) โ€“ A sequence of Ints specifying the element labels.

  • connectivity (tuple) โ€“ A sequence of sequences of Ints specifying the nodal connectivity.

  • instanceNames (tuple) โ€“ A sequence of Strings specifying the instanceNames of each node in the nodal connectivity array. If the node is defined at the assembly level, the instance name should be an empty string

  • type (str) โ€“ A String specifying the element type.

  • elementSetName (str, default: '') โ€“ A String specifying a name for this element set. The default value is the empty string.

  • sectionCategory (Optional[SectionCategory], default: None) โ€“ A SectionCategory object for this element set.

Raises:
  • OdbError โ€“ Addition of this element type is not permitted at the assembly level, Only certain element types are permitted at the assembly level. e.g., connector elements.

  • OdbError โ€“ Connectivity array must be provided for all element, If length of label array does not match connectivity data length.

addNodes(labels, coordinates, nodeSetName=None)[source]๏ƒ

This method adds nodes to the OdbAssembly object using node labels and coordinates. Warning:Adding nodes not in ascending order of their labels may cause Abaqus/Viewer to plot contours incorrectly.

Parameters:
  • labels (tuple) โ€“ A sequence of Ints specifying the node labels.

  • coordinates (tuple) โ€“ A sequence of sequences of Floats specifying the nodal coordinates.

  • nodeSetName (Optional[str], default: None) โ€“ A String specifying a name for this node set. The default value is None.

Raises:
  • OdbError โ€“ Number of node labels and coordinates does not match, If length of labels does not match length of coordinates.

  • OdbError โ€“ Node location specification does not correspond to part dimensions, If width of coordinate array does not match assembly dimension.

connectorOrientations: List[ConnectorOrientation] = [][source]๏ƒ

A ConnectorOrientationArray object.

datumCsyses: dict[str, OdbDatumCsys] = {}[source]๏ƒ

A repository of OdbDatumCsys objects.

elementSets: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying element sets.

elements: List[OdbMeshElement] = [][source]๏ƒ

An OdbMeshElementArray object.

instances: dict[str, OdbInstance] = {}[source]๏ƒ

A repository of OdbInstance objects.

nodeSets: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying node sets.

nodes: List[OdbMeshNode] = [][source]๏ƒ

An OdbMeshNodeArray object.

pretensionSections: List[OdbPretensionSection] = [][source]๏ƒ

An OdbPretensionSectionArray object.

rigidBodies: List[OdbRigidBody] = [][source]๏ƒ

An OdbRigidBodyArray object.

sectionAssignments: List[SectionAssignment] = [][source]๏ƒ

A SectionAssignmentArray object.

surfaces: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying surfaces.

class OdbDatumCsys[source]๏ƒ

Bases: object

The OdbDatumCsys object contains a coordinate system that can be stored in an output database. You can create the datum coordinate system in the Visualization module during an Abaqus/CAE session and save the datum coordinate system to the output database before you exit Abaqus/CAE. Alternatively, the analysis code can write the datum coordinate system to the output database.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].rootAssembly.datumCsyses[name]

Member Details:

DatumCsys(name, datumCsys)[source]๏ƒ

This method copies oneOdbDatumCsys object to a new OdbDatumCsys object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreePoints
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • datumCsys (OdbDatumCsys) โ€“ An OdbDatumCsys object specifying the object to be copied.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysBy6dofNode(name, coordSysType, origin)[source]๏ƒ

A datum coordinate system created with this method results in a system that follows the position of a node. The node location defines the origin of the datum coordinate system. The rotational displacement (UR1, UR2, UR3) of the node defines the orientation of the coordinate system axes. Results, such as those for displacement, are resolved into the orientation of the datum coordinate system without regard to the position of its origin. The last argument is given in the form of an OdbMeshNode object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreePoints
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • origin (OdbMeshNode) โ€“ An OdbMeshNode object specifying the origin of the datum coordinate system.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysByThreeCircNodes(name, coordSysType, node1Arc, node2Arc, node3Arc)[source]๏ƒ

This method is convenient to use where there are no nodes along the axis of a hollow cylinder or at the center of a hollow sphere. The three nodes that you provide as arguments determine a circle in space. The center of the circle is the origin of the datum coordinate system. The normal to the circle is parallel to the zz-axis of a cylindrical coordinate system or to the ฯ•ฯ•-axis of a spherical coordinate system. The line from the origin to the first node defines the rr-axis.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreePoints
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • node1Arc (OdbMeshNode) โ€“ An OdbMeshNode object that lies on the circular arc.

  • node2Arc (OdbMeshNode) โ€“ An OdbMeshNode object that lies on the circular arc.

  • node3Arc (OdbMeshNode) โ€“ An OdbMeshNode object that lies on the circular arc.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysByThreeNodes(name, coordSysType, origin, point1, point2)[source]๏ƒ

This method creates an OdbDatumCsys object using the coordinates of three OdbMeshNode objects. A datum coordinate system created with this method results in a system that follows the position of the three nodes. Results, such as those for displacement, are resolved into the orientation of the datum coordinate system without regard to the position of its origin. The last three arguments are given in the form of an OdbMeshNode object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreePoints
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • origin (OdbMeshNode) โ€“ An OdbMeshNode object specifying a node at the origin of the datum coordinate system.

  • point1 (OdbMeshNode) โ€“ An OdbMeshNode object specifying a node on the local 1- or rr-axis.

  • point2 (OdbMeshNode) โ€“ An OdbMeshNode object specifying a node in the 1-2 or rr-ฮธฮธ plane.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

DatumCsysByThreePoints(name, coordSysType, origin, point1, point2)[source]๏ƒ

This method creates an OdbDatumCsys object using three points. A datum coordinate system created with this method results in a fixed system.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.DatumCsysByThreePoints
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • coordSysType (Literal[CYLINDRICAL, CARTESIAN, SPHERICAL]) โ€“ A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

  • origin (tuple) โ€“ A sequence of Floats specifying the coordinates of the origin of the datum coordinate system.

  • point1 (tuple) โ€“ A sequence of Floats specifying the coordinates of a point on the local 1- or rr-axis.

  • point2 (tuple) โ€“ A sequence of Floats specifying the coordinates of a point in the 1-2 or rr-ฮธฮธ plane.

Returns:

An OdbDatumCsys object.

Return type:

OdbDatumCsys

coordSysType: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the type of coordinate system. Possible values are CARTESIAN, CYLINDRICAL, and SPHERICAL.

globalToLocal(coordinates)[source]๏ƒ

This method transforms specified coordinates in the global coordinate system into this local coordinate system.

New in version 2022: The globalToLocal method was added.

Parameters:

coordinates (tuple[float, float, float]) โ€“ A tuple of three Floats representing the coordinates in the global coordinate system.

Returns:

A tuple of three Floats representing the coordinates in this local coordinate system.

Return type:

tuple[float, float, float]

localToGlobal(coordinates)[source]๏ƒ

This method transforms specified coordinates in this local coordinate system into the global coordinate system.

New in version 2022: The localToGlobal method was added.

Parameters:

coordinates (tuple[float, float, float]) โ€“ A tuple of three Floats representing the coordinates in the local coordinate system.

Returns:

A tuple of three Floats representing the coordinates in this global coordinate system.

Return type:

tuple[float, float, float]

name: str = ''[source]๏ƒ

A String specifying the repository key.

origin: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying the coordinates of the origin of the datum coordinate system.

xAxis: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying a point on the X axis.

yAxis: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying a point on the Y axis.

zAxis: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying a point on the Z axis.

class OdbRigidBody(referenceNode, position=abaqusConstants.INPUT, isothermal=1, elements=<abaqus.Odb.OdbSet.OdbSet object>, tieNodes=<abaqus.Odb.OdbSet.OdbSet object>, pinNodes=<abaqus.Odb.OdbSet.OdbSet object>, analyticSurface=None)[source]๏ƒ

Bases: object

The Rigid body object is used to bind a set of elements and/or a set of nodes and/or an analytical surface with a reference node.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].rigidBodies[i]
session.odbs[name].rootAssembly.instances[name].rigidBodies[i]
session.odbs[name].rootAssembly.rigidBodies[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.rigidBodies[i]

This method creates a OdbRigidBody object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.instances[name].RigidBody
session.odbs[name].rootAssembly.RigidBody
Parameters:
  • referenceNode (OdbSet) โ€“ An OdbSet object specifying the reference node set associated with the rigid body.

  • position (Literal[INPUT, CENTER_OF_MASS], default: INPUT) โ€“ A SymbolicConstant specifying the specific location of the OdbRigidBody reference node relative to the rest of the rigid body. Possible values are INPUT and CENTER_OF_MASS. The default value is INPUT.

  • isothermal (Union[AbaqusBoolean, bool], default: 1) โ€“ A Boolean specifying specify whether the OdbRigidBody can have temperature gradients or be isothermal. This is used only for fully coupled thermal-stress analysis The default value is ON.

  • elements (OdbSet, default: <abaqus.Odb.OdbSet.OdbSet object at 0x7f5b3e711b10>) โ€“ An OdbSet object specifying the element set whose motion is governed by the motion of rigid body reference node.

  • tieNodes (OdbSet, default: <abaqus.Odb.OdbSet.OdbSet object at 0x7f5b3e711b90>) โ€“ An OdbSet object specifying the node set which have both translational and rotational degrees of freedom associated with the rigid body.

  • pinNodes (OdbSet, default: <abaqus.Odb.OdbSet.OdbSet object at 0x7f5b3e711bd0>) โ€“ An OdbSet object specifying the node set which have only translational degrees of freedom associated with the rigid body.

  • analyticSurface (Optional[AnalyticSurface], default: None) โ€“ An AnalyticSurface object specifying the analytic surface whose motion is governed by the motion of rigid body reference node.

Returns:

An OdbRigidBody object.

Return type:

OdbRigidBody

Member Details:

analyticSurface: Optional[AnalyticSurface] = None[source]๏ƒ

An AnalyticSurface object specifying the analytic surface whose motion is governed by the motion of rigid body reference node.

elements: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying the element set whose motion is governed by the motion of rigid body reference node.

isothermal: Union[AbaqusBoolean, bool] = 1[source]๏ƒ

A Boolean specifying specify whether the OdbRigidBody can have temperature gradients or be isothermal. This is used only for fully coupled thermal-stress analysis The default value is ON.

pinNodes: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying the node set which have only translational degrees of freedom associated with the rigid body.

position: SymbolicConstant = 'INPUT'[source]๏ƒ

A SymbolicConstant specifying the specific location of the OdbRigidBody reference node relative to the rest of the rigid body. Possible values are INPUT and CENTER_OF_MASS. The default value is INPUT.

referenceNode: OdbSet[source]๏ƒ

An OdbSet object specifying the reference node set associated with the rigid body.

tieNodes: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying the node set which have both translational and rotational degrees of freedom associated with the rigid body.

class OdbBase(name, analysisTitle='', description='', path='')[source]๏ƒ

Bases: object

The Odb object is the in-memory representation of an output database (ODB) file.

Note

This object can be accessed by:

import odbAccess
session.odbs[name]

This method creates a new Odb object.

Note

This function can be accessed by:

session.Odb
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • analysisTitle (str, default: '') โ€“ A String specifying the title of the output database. The default value is an empty string.

  • description (str, default: '') โ€“ A String specifying the description of the output database. The default value is an empty string.

  • path (str, default: '') โ€“ A String specifying the path to the file where the new output database (.odb ) file will be written. The default value is an empty string.

Returns:

An Odb object.

Return type:

Odb

Member Details:

amplitudes: dict[str, Amplitude] = {}[source]๏ƒ

A repository of Amplitude objects.

close()[source]๏ƒ

This method closes an output database.

customData: RepositorySupport = <abaqus.CustomKernel.RepositorySupport.RepositorySupport object>[source]๏ƒ

A RepositorySupport object.

filters: dict[str, Filter] = {}[source]๏ƒ

A repository of Filter objects.

getFrame(frameValue, match=abaqusConstants.CLOSEST)[source]๏ƒ

This method returns the frame at the specified time, frequency, or mode. It will not interpolate values between frames. The method is not applicable to an Odb object containing steps with different domains or to an Odb object containing a step with load case specific data.

Parameters:
  • frameValue (str) โ€“ A Double specifying the value at which the frame is required. frameValue can be the total time or frequency.

  • match (Literal[BEFORE, EXACT, AFTER, CLOSEST], default: CLOSEST) โ€“ A SymbolicConstant specifying which frame to return if there is no frame at the exact frame value. Possible values are CLOSEST, BEFORE, AFTER, and EXACT. The default value is CLOSEST.When match = CLOSEST, Abaqus returns the closest frame. If the frame value requested is exactly halfway between two frames, Abaqus returns the frame after the value.When match = EXACT, Abaqus raises an exception if the exact frame value does not exist.

Returns:

An OdbFrame object.

Return type:

OdbFrame

Raises:

OdbError โ€“ Frame not found, If the exact frame is not found.

isReadOnly: Union[AbaqusBoolean, bool] = 0[source]๏ƒ

A Boolean specifying whether the output database was opened with read-only access.

jobData: JobData = <abaqus.Odb.JobData.JobData object>[source]๏ƒ

A JobData object.

materials: dict[str, Material] = {}[source]๏ƒ

A repository of Material objects.

parts: dict[str, OdbPart] = {}[source]๏ƒ

A repository of OdbPart objects.

profiles: dict[str, Profile] = {}[source]๏ƒ

A repository of Profile objects.

rootAssembly: OdbAssembly = <abaqus.Odb.OdbAssembly.OdbAssembly object>[source]๏ƒ

An OdbAssembly object.

save()[source]๏ƒ

This method saves output to an output database (.odb ) file.

Raises:

OdbError โ€“ Database save failed. The database was opened as read-only. Modification of data is not permitted.

sectionCategories: dict[str, SectionCategory] = {}[source]๏ƒ

A repository of SectionCategory objects.

sections: dict[str, Section] = {}[source]๏ƒ

A repository of Section objects.

sectorDefinition: SectorDefinition = <abaqus.Odb.SectorDefinition.SectorDefinition object>[source]๏ƒ

A SectorDefinition object.

steps: dict[str, OdbStep] = {}[source]๏ƒ

A repository of OdbStep objects.

update()[source]๏ƒ

This method is used to update an Odb object in memory while an Abaqus analysis writes data to the associated output database. update checks if additional steps have been written to the output database since it was opened or last updated. If additional steps have been written to the output database, update adds them to the Odb object.

Returns:

A Boolean specifying whether additional steps or frames were added to the Odb object.

Return type:

Boolean

userData: UserData = <abaqus.Odb.UserData.UserData object>[source]๏ƒ

A UserData object.

class SectorDefinition[source]๏ƒ

Bases: object

The SectorDefinition object describes the number of symmetry sectors and axis of symmetry for a cyclic symmetry model.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].sectorDefinition

Member Details:

numSectors: Optional[int] = None[source]๏ƒ

An Int specifying the number of sectors in the cyclic symmetry model.

symmetryAxis: Optional[float] = None[source]๏ƒ

A tuple of tuples of Floats specifying the coordinates of two points on the axis of symmetry.

class UserData[source]๏ƒ

Bases: AnimationUserData

Member Details:

AnalyticSurfaceProfile()[source]๏ƒ

This method creates a OdbSequenceAnalyticSurfaceSegment object.

Path:

odbAccess.AnalyticSurfaceProfile()
Returns:

An OdbSequenceAnalyticSurfaceSegment object.

Return type:

OdbSequenceAnalyticSurfaceSegment

isUpgradeRequiredForOdb(upgradeRequiredOdbPath)[source]๏ƒ

This method determines if an output database file needs to be upgraded to the current release. You can access this method using either of the following techniques:

  • From a script running outside Abaqus/CAE. For example:

    import odbAccess
    needsUpgrade = odbAccess.isUpgradeRequiredForOdb(
        upgradeRequiredOdbPath='myOdb.odb')
    
  • From the Visualization module in Abaqus/CAE. For example:

    import visualization
    needsUpgrade = session.isUpgradeRequiredForOdb(upgradeRequiredOdbPath='myOdb.odb')
    
Parameters:

upgradeRequiredOdbPath (str) โ€“ An String specifying the path to an output database file to test. The test determines if the output database needs to be upgraded to the current release.

Returns:

A Boolean indicating the result of the test. A value of True indicates that the output database needs to be upgraded to the current release.

Return type:

Boolean

maxEnvelope()[source]๏ƒ

Retrieve the maximum value of an output variable over a number of fields.

Returns:

A sequence of two fieldOutput objects. The first fieldOutput object contains the maximum value. The second fieldOutput object contains the index of the field containing the maximum value. The index follows the order in which fields are positioned in the list of fieldOutput objects provided as the argument to the function.

Return type:

Sequence[FieldOutput]

Raises:
  • OdbError โ€“

  • TypeError โ€“ This function takes no keyword arguments.

minEnvelope()[source]๏ƒ

Retrieve the minimum value of an output variable over a number of fields.

Returns:

A sequence of two fieldOutput objects. The first fieldOutput object contains the minimum value. The second fieldOutput object contains the index of the field containing the minimum value. The index follows the order in which fields are positioned in the list of fieldOutput objects provided as the argument to the function.

Return type:

Sequence[tuple[FieldOutput, FieldOutput]]

Raises:
  • OdbError โ€“

  • TypeError โ€“ This function takes no keyword arguments.

openOdb(path, readOnly=0, readInternalSets=0)[source]๏ƒ

This method opens an existing output database (.odb) file and creates a new Odb object. You typically execute this method outside of Abaqus/CAE when, in most cases, only one output database is open at any time. For example:

import odbAccess
shockLoadOdb = odbAccess.openOdb(path='myOdb.odb')
Parameters:
  • path (str) โ€“ A String specifying the path to an existing output database (.odb) file.

  • readOnly (Union[AbaqusBoolean, bool], default: 0) โ€“ A Boolean specifying whether the file will permit only read access or both read and write access. The initial value is False, indicating that both read and write access will be permitted.

  • readInternalSets (Union[AbaqusBoolean, bool], default: 0) โ€“ A Boolean specifying whether the file will permit access to sets specified as Internal on the database. The initial value is False, indicating that internal sets will not be read.

Returns:

An Odb object.

Return type:

Odb

Raises:
  • OdbError โ€“ If the output database was generated by a previous release of Abaqus and needs upgrading. Run abaqus upgrade -job <newFilename> -odb <oldFileName> to upgrade it.

  • OdbError โ€“

  • opened. โ€“ If the output database was generated by a newer release of Abaqus, and the installation of Abaqus needs upgrading.

upgradeOdb(existingOdbPath, upgradedOdbPath)[source]๏ƒ

This method upgrades an existing Odb object to the current release and writes the upgraded version of the Odb object to a file. In addition, Abaqus/CAE writes information about the status of the upgrade to a log (.log) file. You can access this method using either of the following techniques:

  • From a script running outside Abaqus/CAE. For example:

    import odbAccess
    odbAccess.upgradeOdb(existingOdbPath='oldOdb', upgradedOdbPath='upgradedOdb')
    
  • From the session object in Abaqus/CAE. For example:

    import visualization
    session.upgradeOdb(existingOdbPath='oldOdb', upgradedOdbPath='upgradedOdb')
    
Parameters:
  • existingOdbPath (str) โ€“ An String specifying the path to the file containing the output database to be upgraded.

  • upgradedOdbPath (str) โ€“ An String specifying the path to the file that will contain the upgraded output database.

Raises:

OdbError โ€“ If the output database upgrade fails.

class OdbFrame(incrementNumber: int, frameValue: float, description: str = '')[source]๏ƒ
class OdbFrame(mode: int, frequency: float, description: str = '')
class OdbFrame(loadCase: OdbLoadCase, description: str = '', frequency: float = 0)

Bases: object

The domain of the OdbFrame object is taken from the parent step.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].frames[i]

Member Details:

FieldOutput(name: str, description: str, type: SymbolicConstant)[source]๏ƒ
FieldOutput(field: FieldOutput, name: str = '', description: str = '')
FieldOutput(*args, **kwargs)
Frame(*args, **kwargs)[source]๏ƒ
associatedFrame: Optional[OdbFrame] = None[source]๏ƒ

An OdbFrame object specifying the real or imaginary portion of the data corresponding to this cyclic symmetry mode.

cyclicModeNumber: Optional[int] = None[source]๏ƒ

An Int specifying the cyclic mode number associated with the data stored on this frame. Only frequency analyses of cyclic symmetry models possess cyclic mode numbers.

description: str = ''[source]๏ƒ

A String specifying the contents of the frame. The default value is an empty string.

domain: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the domain of the step of which the frame is a member. Possible values are TIME, FREQUENCY, and MODAL.

fieldOutputs: dict[str, FieldOutput] = {}[source]๏ƒ

A repository of FieldOutput objects specifying the key to the fieldOutputs repository is a String representing an output variable.

frameValue: float[source]๏ƒ

A Float specifying the value in units determined by the domain member of the Step object. The equivalent in the time domain is stepTime; in the frequency domain the equivalent is frequency; and in the modal domain the equivalent is mode.

frequency: float = 0[source]๏ƒ

A Float specifying the frequency. This member is valid only if domain = FREQUENCY or if the procedureType member of the Step object=FREQUENCY. The default value is 0.0.

incrementNumber: int[source]๏ƒ

An Int specifying the frame increment number within the step. The base frame has normally increment number 0, and the results run from 1. In case of multiple load cases, the same increment number is duplicated for each loadcase.

loadCase: OdbLoadCase = <abaqus.Odb.OdbLoadCase.OdbLoadCase object>[source]๏ƒ

An OdbLoadCase object specifying the load case for the frame.

mode: Optional[int] = None[source]๏ƒ

An Int specifying the eigenmode. This member is valid only if domain = MODAL.

class OdbLoadCase(name)[source]๏ƒ

Bases: object

The OdbLoadCase object describes a load case.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name].frames[i].loadCase
session.odbs[name].steps[name].historyRegions[name].loadCase
session.odbs[name].steps[name].loadCases[name]

This method creates an OdbLoadCase object.

Note

This function can be accessed by:

session.odbs[name].steps[name].LoadCase
Parameters:

name (str) โ€“ A String specifying the name of the OdbLoadCase object.

Returns:

An OdbLoadCase object.

Return type:

OdbLoadCase

Member Details:

name: str[source]๏ƒ

A String specifying the name of the OdbLoadCase object.

class OdbInstanceBase(name, object, localCoordSystem=())[source]๏ƒ

Bases: object

A part instance is the usage of a part within an assembly.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].rootAssembly.instances[name]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance

This method creates an OdbInstance object from an OdbPart object.

Note

This function can be accessed by:

session.odbs[name].rootAssembly.Instance
Parameters:
  • name (str) โ€“ A String specifying the instance name.

  • object (OdbPart) โ€“ An OdbPart object.

  • localCoordSystem (tuple, default: ()) โ€“ A sequence of sequences of three Floats specifying the rotation and translation of the part instance in the global Cartesian coordinate system. The first three sequences specify the new local coordinate system with its center at the origin.The first sequence specifies a point on the 1-axis.The second sequence specifies a point on the 2-axis.The third sequence specifies a point on the 3-axis.The fourth sequence specifies the translation of the local coordinate system from the origin to its intended location.For example, the following sequence moves a part 10 units in the X direction with no rotation: localCoordSystem = ((1, 0, 0), (0, 1, 0), (0, 0, 1), (10, 0, 0))`The following sequence moves a part 5 units in the **X** direction with rotation: `localCoordSystem = ((0, 1, 0), (1, 0, 0), (0, 0, 1), (5, 0, 0)) transforms a part containing the two points Pt1= (1,0,0) Pt2= (2,0,0) to Pt1 = (0, 6, 0) Pt2 = (0, 7, 0)

Returns:

An OdbInstance object.

Return type:

OdbInstance

Member Details:

AnalyticRigidSurf2DPlanar(name, profile, filletRadius=0)[source]๏ƒ

This method is used to define a two-dimensional AnalyticSurface object on the instance.

Parameters:
  • name (str) โ€“ The name of the analytic surface.

  • profile (Sequence[AnalyticSurfaceSegment]) โ€“ A sequence of AnalyticSurfaceSegment objects or an OdbSequenceAnalyticSurfaceSegment object.

  • filletRadius (float, default: 0) โ€“ A Double specifying the radius of curvature to smooth discontinuities between adjoining segments. The default value is 0.0.

Raises:

OdbError โ€“ 2D-Planar Analytic Rigid Surface can be defined only if the instance is of type TWO_D_PLANAR or AXISYMMETRIC. If OdbPart associated with the part instance is of type THREE_D.

AnalyticRigidSurfExtrude(name, profile, filletRadius=0, localCoordData=())[source]๏ƒ

This method is used to define a three-dimensional cylindrical AnalyticSurface on the instance.

Parameters:
  • name (str) โ€“ The name of the analytic surface.

  • profile (Sequence[AnalyticSurfaceSegment]) โ€“ A sequence of AnalyticSurfaceSegment objects or an OdbSequenceAnalyticSurfaceSegment object.

  • filletRadius (float, default: 0) โ€“ A Double specifying the radius of curvature to smooth discontinuities between adjoining segments. The default value is 0.0.

  • localCoordData (tuple, default: ()) โ€“ A sequence of sequences of Floats specifying the global coordinates of points used to define the local coordinate system.

Raises:

OdbError โ€“ Analytic Rigid Surface of type CYLINDER can be defined only if the instance is of type THREE_D, If OdbPart associated with the part instance is not of type THREE_D.

AnalyticRigidSurfRevolve(name, profile, filletRadius=0, localCoordData=())[source]๏ƒ

This method is used to define a three-dimensional AnalyticSurface of revolution on the instance.

Parameters:
  • name (str) โ€“ The name of the analytic surface.

  • profile (Sequence[AnalyticSurfaceSegment]) โ€“ A sequence of AnalyticSurfaceSegment objects or an OdbSequenceAnalyticSurfaceSegment object.

  • filletRadius (float, default: 0) โ€“ A Double specifying the radius of curvature to smooth discontinuities between adjoining segments. The default value is 0.0.

  • localCoordData (tuple, default: ()) โ€“ A sequence of sequences of Floats specifying the global coordinates of points used to define the local coordinate system.

Raises:

OdbError โ€“ Analytic Rigid Surface of type REVOLUTION can be defined only if the instance is of type THREE_D, If OdbPart associated with the part instance is not of type THREE_D.

RigidBody(referenceNode, position=abaqusConstants.INPUT, isothermal=0, elset='', pinNodes='', tieNodes='', analyticSurface='')[source]๏ƒ

This method defines an OdbRigidBody on the instance.

Parameters:
  • referenceNode (str) โ€“ An OdbSet specifying the reference node assigned to the rigid body.

  • position (str, default: INPUT) โ€“ A symbolic constant specify if the location of the reference node is to be defined by the user. Possible values are INPUT, and CENTER_OF_MASS. The default value is INPUT.

  • isothermal (Union[AbaqusBoolean, bool], default: 0) โ€“ A Boolean specifying an isothermal rigid body. The default value is OFF. This parameter is used only for a fully-coupled thermal stress analysis.

  • elset (str, default: '') โ€“ An OdbSet specifying an element set assigned to the rigid body.

  • pinNodes (str, default: '') โ€“ An OdbSet specifying pin-type nodes assigned to the rigid body.

  • tieNodes (str, default: '') โ€“ An OdbSet specifying tie-type nodes assigned to the rigid body.

  • analyticSurface (str, default: '') โ€“ An AnalyticSurface specifying the Analytic Rigid Surface assigned to the rigid body.

Raises:

OdbError โ€“ Rigid body definition requires a node set, If referenceNode is not a node set.

analyticSurface: AnalyticSurface = <abaqus.Odb.AnalyticSurface.AnalyticSurface object>[source]๏ƒ

An AnalyticSurface object specifying analytic Surface defined on the instance.

assignBeamOrientation(region, method, vector)[source]๏ƒ

This method assigns a beam section orientation to a region of a part instance.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region on an instance.

  • method (Literal[N1_COSINES]) โ€“ A SymbolicConstant specifying the assignment method. Only a value of N1_COSINES is currently supported.

  • vector (tuple) โ€“ A sequence of three Floats specifying the approximate local n1n1-direction of the beam cross-section.

assignMaterialOrientation(region, localCsys, axis=abaqusConstants.AXIS_1, angle=0, stackDirection=abaqusConstants.STACK_3)[source]๏ƒ

This method assigns a material orientation to a region of a part instance.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region on an instance.

  • localCsys (OdbDatumCsys) โ€“ An OdbDatumCsys object specifying the local coordinate system or None, indicating the global coordinate system.

  • axis (Literal[AXIS_1, AXIS_3, AXIS_2], default: AXIS_1) โ€“ A SymbolicConstant specifying the axis of a cylindrical or spherical datum coordinate system about which an additional rotation is applied. For shells this axis is also the shell normal. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

  • angle (float, default: 0) โ€“ A Float specifying the angle of the additional rotation. The default value is 0.0.

  • stackDirection (Literal[STACK_2, STACK_ORIENTATION, STACK_3, STACK_1], default: STACK_3) โ€“ A SymbolicConstant specifying the stack or thickness direction of the material. Possible values are STACK_1, STACK_2, STACK_3, and STACK_ORIENTATION. The default value is STACK_3.

assignRebarOrientation(region, localCsys, axis=abaqusConstants.AXIS_1, angle=0)[source]๏ƒ

This method assigns a rebar reference orientation to a region of a part instance.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region on an instance.

  • localCsys (OdbDatumCsys) โ€“ An OdbDatumCsys object specifying the local coordinate system or None, indicating the global coordinate system.

  • axis (Literal[AXIS_1, AXIS_3, AXIS_2], default: AXIS_1) โ€“ A SymbolicConstant specifying the axis of a cylindrical or spherical datum coordinate system about which an additional rotation is applied. For shells this axis is also the shell normal. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

  • angle (float, default: 0) โ€“ A Float specifying the angle of the additional rotation. The default value is 0.0.

assignSection(region, section)[source]๏ƒ

This method is used to assign a section to a region on an instance.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region on an instance.

  • section (Section) โ€“ A Section object.

Raises:
  • OdbError โ€“ Section assignment requires element set, If region is not an element set.

  • OdbError โ€“ Section assignment requires element set from this part instance, If the element set is not from the current instance.

beamOrientations: List[BeamOrientation] = [][source]๏ƒ

A BeamOrientationArray object.

elementSets: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying element sets.

elements: List[OdbMeshElement] = [][source]๏ƒ

An OdbMeshElementArray object.

embeddedSpace: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the dimensionality of the Part object. Possible values are THREE_D, TWO_D_PLANAR, AXISYMMETRIC, and UNKNOWN_DIMENSION.

getElementFromLabel(label)[source]๏ƒ

This method is used to retrieved an element with a specific label from an instance object.

Parameters:

label (int) โ€“ An Int specifying the element label.

Returns:

An OdbMeshElement object.

Return type:

OdbMeshElement

Raises:

OdbError โ€“ Invalid element label, If no element with the specified label exists.

getNodeFromLabel(label)[source]๏ƒ

This method is used to retrieved a node with a specific label from an instance object.

Parameters:

label (int) โ€“ An Int specifying the node label.

Returns:

An OdbMeshNode object.

Return type:

OdbMeshNode

Raises:

OdbError โ€“ Invalid node label, If no node with the specified label exists.

materialOrientations: List[MaterialOrientation] = [][source]๏ƒ

A MaterialOrientationArray object.

name: str = ''[source]๏ƒ

A String specifying the instance name.

nodeSets: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying node sets.

nodes: List[OdbMeshNode] = [][source]๏ƒ

An OdbMeshNodeArray object.

rebarOrientations: List[RebarOrientation] = [][source]๏ƒ

A RebarOrientationArray object.

resultState: SymbolicConstant = 'PROPAGATED'[source]๏ƒ

A SymbolicConstant specifying the state of the Instance as modified by the analysis. This member is only present if the Instance is part of the RootAssemblyState tree. Possible values are:PROPAGATED, specifying that the value is the same as the previous frame or the original rootAssembly.MODIFIED, specifying that the geometry of the instance has been changed at this frame.The default value is PROPAGATED.

rigidBodies: List[OdbRigidBody] = [][source]๏ƒ

An OdbRigidBodyArray object.

sectionAssignments: List[SectionAssignment] = [][source]๏ƒ

A SectionAssignmentArray object.

surfaces: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying surfaces.

type: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the type of the Part object. Only a value of DEFORMABLE_BODY is currently supported.

class OdbPartBase(name, embeddedSpace, type)[source]๏ƒ

Bases: object

The OdbPart object is similar to the kernel Part object and contains nodes and elements, but not geometry.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name]

This method creates an OdbPart object. Nodes and elements are added to this object at a later stage.

Note

This function can be accessed by:

session.odbs[name].Part
Parameters:
  • name (str) โ€“ A String specifying the part name.

  • embeddedSpace (Literal[THREE_D, AXISYMMETRIC, TWO_D_PLANAR]) โ€“ A SymbolicConstant specifying the dimensionality of the Part object. Possible values are THREE_D, TWO_D_PLANAR, and AXISYMMETRIC.

  • type (Literal[DEFORMABLE_BODY, ANALYTIC_RIGID_SURFACE]) โ€“ A SymbolicConstant specifying the type of the Part object. Possible values are DEFORMABLE_BODY and ANALYTIC_RIGID_SURFACE.

Returns:

An OdbPart object.

Return type:

OdbPart

Member Details:

AnalyticRigidSurf2DPlanar(name, profile, filletRadius=0)[source]๏ƒ

This method is used to define a two-dimensional AnalyticSurface object on the part object.

Parameters:
  • name (str) โ€“ The name of the analytic surface.

  • profile (Sequence[AnalyticSurfaceSegment]) โ€“ A sequence of AnalyticSurfaceSegment objects or an OdbSequenceAnalyticSurfaceSegment object.

  • filletRadius (float, default: 0) โ€“ A Double specifying the radius of curvature to smooth discontinuities between adjoining segments. The default value is 0.0.

Raises:
  • OdbError โ€“

  • TWO_D_PLANAR โ€“ If OdbPart is of type THREE_D.

AnalyticRigidSurfExtrude(name, profile, filletRadius=0)[source]๏ƒ

This method is used to define a three-dimensional cylindrical AnalyticSurface on the part object.

Parameters:
  • name (str) โ€“ The name of the analytic surface.

  • profile (Sequence[AnalyticSurfaceSegment]) โ€“ A sequence of AnalyticSurfaceSegment objects or an OdbSequenceAnalyticSurfaceSegment object.

  • filletRadius (float, default: 0) โ€“ A Double specifying the radius of curvature to smooth discontinuities between adjoining segments. The default value is 0.0.

Raises:
  • OdbError โ€“

  • of type THREE_D โ€“ If OdbPart is not of type THREE_D.

AnalyticRigidSurfRevolve(name, profile, filletRadius=0)[source]๏ƒ

This method is used to define a three-dimensional AnalyticSurface of revolution on the part object.

Parameters:
  • name (str) โ€“ The name of the analytic surface.

  • profile (Sequence[AnalyticSurfaceSegment]) โ€“ A sequence of AnalyticSurfaceSegment objects or an OdbSequenceAnalyticSurfaceSegment object.

  • filletRadius (float, default: 0) โ€“ A Double specifying the radius of curvature to smooth discontinuities between adjoining segments. The default value is 0.0.

Raises:
  • OdbError โ€“

  • of type THREE_D โ€“ If OdbPart is not of type THREE_D.

addElements(labels: tuple, connectivity: tuple, type: str)[source]๏ƒ
addElements(elementData: tuple, type: str, elementSetName: str | None = None)
addElements(*args, **kwargs)
addNodes(labels: tuple, coordinates: tuple, nodeSetName: str | None = None)[source]๏ƒ
addNodes(nodeData: tuple, nodeSetName: str | None = None)
addNodes(*args, **kwargs)
analyticSurface: AnalyticSurface = <abaqus.Odb.AnalyticSurface.AnalyticSurface object>[source]๏ƒ

An AnalyticSurface object specifying analytic Surface defined on the instance.

assignBeamOrientation(region, method, vector)[source]๏ƒ

This method assigns a beam section orientation to a region of a part instance.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region on an instance.

  • method (Literal[N1_COSINES]) โ€“ A SymbolicConstant specifying the assignment method. Only a value of N1_COSINES is currently supported.

  • vector (tuple) โ€“ A sequence of three Floats specifying the approximate local n1n1 -direction of the beam cross-section.

assignMaterialOrientation(region, localCSys, axis=abaqusConstants.AXIS_1, angle=0, stackDirection=abaqusConstants.STACK_3)[source]๏ƒ

This method assigns a material orientation to a region of a part instance.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region on an instance.

  • localCSys (OdbDatumCsys) โ€“ An OdbDatumCsys object specifying the local coordinate system or None, indicating the global coordinate system.

  • axis (Literal[AXIS_1, AXIS_3, AXIS_2], default: AXIS_1) โ€“ A SymbolicConstant specifying the axis of a cylindrical or spherical datum coordinate system about which an additional rotation is applied. For shells this axis is also the shell normal. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

  • angle (float, default: 0) โ€“ A Float specifying the angle of the additional rotation. The default value is 0.0.

  • stackDirection (Literal[STACK_2, STACK_ORIENTATION, STACK_3, STACK_1], default: STACK_3) โ€“ A SymbolicConstant specifying the stack or thickness direction of the material. Possible values are STACK_1, STACK_2, STACK_3, and STACK_ORIENTATION. The default value is STACK_3.

assignRebarOrientation(region, localCsys, axis=abaqusConstants.AXIS_1, angle=0)[source]๏ƒ

This method assigns a rebar reference orientation to a region of a part instance.

Parameters:
  • region (str) โ€“ An OdbSet specifying a region on an instance.

  • localCsys (OdbDatumCsys) โ€“ An OdbDatumCsys object specifying the local coordinate system or None, indicating the global coordinate system.

  • axis (Literal[AXIS_1, AXIS_3, AXIS_2], default: AXIS_1) โ€“ A SymbolicConstant specifying the axis of a cylindrical or spherical datum coordinate system about which an additional rotation is applied. For shells this axis is also the shell normal. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

  • angle (float, default: 0) โ€“ A Float specifying the angle of the additional rotation. The default value is 0.0.

beamOrientations: List[BeamOrientation] = [][source]๏ƒ

A BeamOrientationArray object.

elementSets: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying element sets.

elements: List[OdbMeshElement] = [][source]๏ƒ

An OdbMeshElementArray object.

getElementFromLabel(label)[source]๏ƒ

This method is used to retrieved an element with a specific label from a part object.

Parameters:

label (int) โ€“ An Int specifying the element label.

Returns:

An OdbMeshElement object.

Return type:

OdbMeshElement

Raises:

OdbError โ€“ Invalid element label, If no element with the specified label exists.

getNodeFromLabel(label)[source]๏ƒ

This method is used to retrieved a node with a specific label from a part object.

Parameters:

label (int) โ€“ An Int specifying the node label.

Returns:

An OdbMeshNode object.

Return type:

OdbMeshNode

Raises:

OdbError โ€“ Invalid node label, If no node with the specified label exists.

materialOrientations: List[MaterialOrientation] = [][source]๏ƒ

A MaterialOrientationArray object.

nodeSets: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying node sets.

nodes: List[OdbMeshNode] = [][source]๏ƒ

An OdbMeshNodeArray object.

rebarOrientations: List[RebarOrientation] = [][source]๏ƒ

A RebarOrientationArray object.

rigidBodies: List[OdbRigidBody] = [][source]๏ƒ

An OdbRigidBodyArray object.

sectionAssignments: List[SectionAssignment] = [][source]๏ƒ

A SectionAssignmentArray object.

surfaces: dict[str, OdbSet] = {}[source]๏ƒ

A repository of OdbSet objects specifying surfaces.

class OdbPretensionSection[source]๏ƒ

Bases: object

The pretension section object is used to define an assembly load. It associates a pretension node with a pretension section.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].rootAssembly.pretensionSections[i]

Member Details:

element: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying the element set that defines the pretension section.

node: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying the node set containing the pretension node.

normal: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying the components of the normal to the pretension section.

surface: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying the surface set that defines the pretension section.

class OdbSession[source]๏ƒ

Bases: SessionBase

Member Details:

ScratchOdb(odb)[source]๏ƒ

This method creates a new ScratchOdb object.

Note

This function can be accessed by:

session.ScratchOdb
Parameters:

odb (Odb) โ€“ An Odb object specifying the output database with which to associate.

Returns:

A ScratchOdb object.

Return type:

ScratchOdb

class ScratchOdb(odb)[source]๏ƒ

Bases: object

A scratch output database is associated with an open output database and is used to store session- related, non-persistent objects, such as Step, Frame and FieldOutput objects. Abaqus creates a scratch output database when needed for these non-persistent objects during an Abaqus/CAE session. Abaqus deletes the scratch output database when the associated output database is closed.

Note

This object can be accessed by:

import odbAccess
session.scratchOdbs[name]

This method creates a new ScratchOdb object.

Note

This function can be accessed by:

session.ScratchOdb
Parameters:

odb (Odb) โ€“ An Odb object specifying the output database with which to associate.

Returns:

A ScratchOdb object.

Return type:

ScratchOdb

Member Details:

class OdbStepBase(name, description, domain, timePeriod=0, previousStepName='', procedure='', totalTime=None)[source]๏ƒ

Bases: object

An output database contains the same steps of the model database that originated it.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].steps[name]

This method creates an OdbStep object.

Note

This function can be accessed by:

session.odbs[name].Step
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • description (str) โ€“ A String specifying the step description.

  • domain (Literal[TIME, FREQUENCY, ARC_LENGTH, MODAL]) โ€“ A SymbolicConstant specifying the domain of the step. Possible values are TIME, FREQUENCY, ARC_LENGTH, and MODAL.The type of OdbFrame object that can be created for this step is based on the value of the domain argument.

  • timePeriod (float, default: 0) โ€“ A Float specifying the time period of the step. timePeriod is required if domain = TIME; otherwise, this argument is not applicable. The default value is 0.0.

  • previousStepName (str, default: '') โ€“ A String specifying the preceding step. If previousStepName is the empty string, the last step in the repository is used. If previousStepName is not the last step, this will result in a change to the previousStepName member of the step that was in that position. A special value โ€˜Initialโ€™ refers to the internal initial model step and may be used exclusively for inserting a new step at the first position before any other existing steps. The default value is an empty string.

  • procedure (str, default: '') โ€“

    A String specifying the step procedure. The default value is an empty string. The following is the list of valid procedures:

    • *ANNEAL

    • *BUCKLE

    • *COMPLEX FREQUENCY

    • *COUPLED TEMPERATURE-DISPLACEMENT

    • *COUPLED TEMPERATURE-DISPLACEMENT, CETOL

    • *COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE

    • *COUPLED THERMAL-ELECTRICAL, STEADY STATE

    • *COUPLED THERMAL-ELECTRICAL

    • *COUPLED THERMAL-ELECTRICAL, DELTMX

    • *DYNAMIC

    • *DYNAMIC, DIRECT

    • *DYNAMIC, EXPLICIT

    • *DYNAMIC, SUBSPACE

    • *DYNAMIC TEMPERATURE-DISPLACEMENT, EXPLICT

    • *ELECTROMAGNETIC, HIGH FREQUENCY, TIME HARMONIC

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME DOMAIN, DIRECT

    • *ELECTROMAGNETIC, LOW FREQUENCY, TIME HARMONIC

    • *FREQUENCY

    • *GEOSTATIC

    • *HEAT TRANSFER

    • *HEAT TRANSFER, DELTAMX=__

    • *HEAT TRANSFER, STEADY STATE

    • *MAGNETOSTATIC

    • *MAGNETOSTATIC, DIRECT

    • *MASS DIFFUSION

    • *MASS DIFFUSION, DCMAX=

    • *MASS DIFFUSION, STEADY STATE

    • *MODAL DYNAMIC

    • *RANDOM RESPONSE

    • *RESPONSE SPECTRUM

    • *SOILS

    • *SOILS, CETOL/UTOL

    • *SOILS, CONSOLIDATION

    • *SOILS, CONSOLIDATION, CETOL/UTOL

    • *STATIC

    • *STATIC, DIRECT

    • *STATIC, RIKS

    • *STEADY STATE DYNAMICS

    • *STEADY STATE TRANSPORT

    • *STEADY STATE TRANSPORT, DIRECT

    • *STEP PERTURBATION, *STATIC

    • *SUBSTRUCTURE GENERATE

    • *USA ADDDED MASS GENERATION

    • *VISCO

  • totalTime (Optional[float], default: None) โ€“ A Float specifying the analysis time spend in all the steps previous to this step. The default value is โˆ’1.0.

Returns:

An OdbStep object.

Return type:

OdbStep

Raises:

ValueError โ€“ previousStepName is invalid, If previousStepName is invalid.

Member Details:

acousticMass: Optional[float] = None[source]๏ƒ

A Float specifying the current value of the mass of the acoustic media of the model.

acousticMassCenter: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying the coordinates of the center of mass of the acoustic media.

frames: List[OdbFrame] = [][source]๏ƒ

An OdbFrameArray object.

getFrame(frameValue: str, match: Literal[CLOSEST, BEFORE, AFTER, EXACT] = CLOSEST)[source]๏ƒ
getFrame(loadCase: OdbLoadCase)
getFrame(loadCase: OdbLoadCase, frameValue: str, match: Literal[CLOSEST, BEFORE, AFTER, EXACT] = CLOSEST)
getFrame(*args, **kwargs)
getHistoryRegion(point, loadCase=<abaqus.Odb.OdbLoadCase.OdbLoadCase object>)[source]๏ƒ

This method retrieves a HistoryRegion object associated with a HistoryPoint in the model.

Parameters:
  • point (HistoryPoint) โ€“ A HistoryPoint object specifying the point in the model.

  • loadCase (OdbLoadCase, default: <abaqus.Odb.OdbLoadCase.OdbLoadCase object at 0x7f5b3e7ddc90>) โ€“ An OdbLoadCase object specifying a load case in the step.

Returns:

A HistoryRegion object.

Return type:

HistoryRegion

Raises:

OdbError โ€“ HistoryRegion not found, If a HistoryRegion object is not found.

historyRegions: dict[str, HistoryRegion] = {}[source]๏ƒ

A repository of HistoryRegion objects.

inertiaAboutCenter: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying the moments and products of inertia about the center of mass. For 3-D models inertia quantities are written in the following order: I(XX), I(YY), I(ZZ), I(XY), I(XZ), and I(YZ). For 2-D models only I(ZZ) and I(XY) are outputted.

inertiaAboutOrigin: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying the moments and products of inertia about the origin of the global coordinate system. For 3-D models inertia quantities are written in the following order: I(XX), I(YY), I(ZZ), I(XY), I(XZ), and I(YZ). For 2-D models only I(ZZ) and I(XY) are outputted.

loadCases: dict[str, OdbLoadCase] = {}[source]๏ƒ

A repository of OdbLoadCase objects.

mass: Optional[float] = None[source]๏ƒ

A Float specifying the current value of the mass of the model. This does not include the mass of the acoustic media if any present.

massCenter: Optional[float] = None[source]๏ƒ

A tuple of Floats specifying the coordinates of the center of mass.

nlgeom: Union[AbaqusBoolean, bool] = 0[source]๏ƒ

A Boolean specifying whether geometric nonlinearity can occur in this step.

number: Optional[int] = None[source]๏ƒ

An Int specifying the step number.

setDefaultDeformedField(field)[source]๏ƒ

This method sets the default deformed field variable in a step.

Parameters:

field (FieldOutput) โ€“ A FieldOutput object specifying the default deformed field variable for visualization.

setDefaultField(field)[source]๏ƒ

This method sets the default field variable in a step.

Parameters:

field (FieldOutput) โ€“ A FieldOutput object specifying the default field variable for visualization.

class RebarOrientation[source]๏ƒ

Bases: object

The RebarOrientation object represents the orientation of the rebar reference.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].parts[name].rebarOrientations[i]
session.odbs[name].rootAssembly.instances[name].rebarOrientations[i]
session.odbs[name].steps[name].frames[i].fieldOutputs[name].values[i].instance.rebarOrientations[i]

Member Details:

angle: Optional[float] = None[source]๏ƒ

A Float specifying the angle of the additional rotation.

axis: SymbolicConstant[source]๏ƒ

A SymbolicConstant specifying the axis of a cylindrical or spherical datum coordinate system about which an additional rotation is applied. Possible values are AXIS_1, AXIS_2, and AXIS_3.

csys: OdbDatumCsys = <abaqus.Odb.OdbDatumCsys.OdbDatumCsys object>[source]๏ƒ

An OdbDatumCsys object specifying a datum coordinates system.

region: OdbSet = <abaqus.Odb.OdbSet.OdbSet object>[source]๏ƒ

An OdbSet object specifying a region for which the rebar orientation is defined.

class UserDataBase[source]๏ƒ

Bases: object

The UserData object contains user-defined XY data. The UserData object has no constructor; it is created automatically when an Odb object is created.

Note

This object can be accessed by:

import odbAccess
session.odbs[name].userData

Member Details:

XYData(name, data, sourceDescription='', contentDescription='', positionDescription='', legendLabel='', xValuesLabel='', yValuesLabel='', axis1QuantityType=None, axis2QuantityType=None)[source]๏ƒ

This method creates an XYData object from a sequence of X - Y data pairs.

Note

This function can be accessed by:

session.odbs[name].userData.XYData
Parameters:
  • name (str) โ€“ A String specifying the repository key.

  • data (tuple) โ€“ A sequence of pairs of Floats specifying the X - Y data pairs.

  • sourceDescription (str, default: '') โ€“ A String specifying the source of the X - Y data (e.g., โ€œEntered from keyboardโ€, โ€œTaken from ASCII fileโ€, โ€œRead from an ODBโ€, etc.). The default value is an empty string.

  • contentDescription (str, default: '') โ€“ A String specifying the content of the X - Y data (e.g., โ€œfield 1 vs. field 2โ€). The default value is an empty string.

  • positionDescription (str, default: '') โ€“ A String specifying additional information about the X - Y data (e.g., โ€œfor whole modelโ€). The default value is an empty string.

  • legendLabel (str, default: '') โ€“ A String specifying the label to be used in the legend. The default value is the name of the XYData object.

  • xValuesLabel (str, default: '') โ€“ A String specifying the label for the X-values. This value may be overridden if the X - Y data are combined with other X - Y data. The default value is an empty string.

  • yValuesLabel (str, default: '') โ€“ A String specifying the label for the Y-values. This value may be overridden if the X - Y data are combined with other X - Y data. The default value is an empty string.

  • axis1QuantityType (Optional[QuantityType], default: None) โ€“ A QuantityType object specifying the QuantityType object associated to the X -axis1- values.

  • axis2QuantityType (Optional[QuantityType], default: None) โ€“ A QuantityType object specifying the QuantityType object associated to the Y -axis2- values.

Returns:

An XYData object.

Return type:

XYData

annotations: dict[str, Annotation] = {}[source]๏ƒ

A repository of Annotation objects.

axis1QuantityType: QuantityType = <abaqus.XY.QuantityType.QuantityType object>[source]๏ƒ

A QuantityType object specifying the QuantityType object associated to the X -axis1- values.

axis2QuantityType: QuantityType = <abaqus.XY.QuantityType.QuantityType object>[source]๏ƒ

A QuantityType object specifying the QuantityType object associated to the Y -axis2- values.

contentDescription: str = ''[source]๏ƒ

A String specifying the content of the X - Y data (e.g., โ€œfield 1 vs. field 2โ€). The default value is an empty string.

data: Optional[float] = None[source]๏ƒ

A tuple of pairs of Floats specifying the X - Y data pairs.

legendLabel: str = ''[source]๏ƒ

A String specifying the label to be used in the legend. The default value is the name of the XYData object.

name: str = ''[source]๏ƒ

A String specifying the repository key.

positionDescription: str = ''[source]๏ƒ

A String specifying additional information about the X - Y data (e.g., โ€œfor whole modelโ€). The default value is an empty string.

sourceDescription: str = ''[source]๏ƒ

A String specifying the source of the X - Y data (e.g., โ€œEntered from keyboardโ€, โ€œTaken from ASCII fileโ€, โ€œRead from an ODBโ€, etc.). The default value is an empty string.

xValuesLabel: str = ''[source]๏ƒ

A String specifying the label for the X-values. This value may be overridden if the X - Y data are combined with other X - Y data. The default value is an empty string.

xyDataObjects: dict[str, XYData] = {}[source]๏ƒ

A repository of XYData objects.

yValuesLabel: str = ''[source]๏ƒ

A String specifying the label for the Y-values. This value may be overridden if the X - Y data are combined with other X - Y data. The default value is an empty string.