Engineering Feature#

A specific type of engineering feature object is designed for each type of engineering feature.

Create engineering features#

EngineeringFeature.AssembledFastener(name: str, region: Region, templateModel: str, controlSet: Region, templateSurfaces: tuple, assignedSurfaces: tuple, propertyPrefix: str, orientMethod: SymbolicConstantType = 'NORMALS', localCsys: int | None = None, scriptName: str = '') AssembledFastener[source]#

This method creates an AssembledFastener object. Although the constructor is available both for parts and for the assembly, AssembledFastener objects are currently supported only under the assembly.

Parameters:
name

A String specifying the repository key.

region

A Region object specifying the region of attachment points to which assembled fasteners are applied.

templateModel

A String specifying the name of the template model.

controlSet

A Region object specifying the template model control point set. The set must contain a single node or vertex.

templateSurfaces

A sequence of Strings specifying the names of the template model surfaces that are referenced by tie or coupling constraints.

assignedSurfaces

A sequence of Strings specifying the names of the master model surfaces that will be substituted for the template model constraint surfaces.

propertyPrefix

A String specifying the name of the property prefix string. This string will be prepended to every property name as it is copied to the master model from the template model.

orientMethod

A SymbolicConstant specifying the method used to orient the virtual instances of the template model at each attachment point. Possible values are NORMALS and CSYS. The default value is NORMALS.

localCsys

None or a DatumCsys object specifying the local coordinate system. If *localCsys*=None, the global coordinate system is used. When this member is queried, it returns an Int. The default value is None.This argument applies only when *orientMethod*=CSYS.

scriptName

A String specifying the name of the property generation script. The default value is an empty string.

Returns:
An AssembledFastener object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.AssembledFastener
mdb.models[name].rootAssembly.engineeringFeatures.AssembledFastener
EngineeringFeature.ContourIntegral(name: str, crackFront: RegionArray, crackTip: RegionArray, extensionDirectionMethod: SymbolicConstantType, symmetric: BooleanType = 0, listOfRegions: BooleanType = 0, crackFrontName: str = '', crackTipName: str = '', crackNormal: tuple = (), qVectors: tuple = (), midNodePosition: float = 0, collapsedElementAtTip: SymbolicConstantType = 'NONE') ContourIntegral[source]#

This method creates a ContourIntegral object. Although the constructor is available both for parts and for the assembly, ContourIntegral objects are currently supported only under the assembly.

Parameters:
name

A String specifying the repository key.

crackFront

A RegionArray object specifying the crack-front region to which the contour integral is applied. If the crack-front consists of a single region, a Region object may be specified instead of a sequence with a single item in it.

crackTip

A RegionArray object specifying the crack-tip region to which the contour integral is applied. If the crack-tip consists of a single region, a Region object may be specified instead of a sequence with a single item in it.

extensionDirectionMethod

A SymbolicConstant specifying how the virtual crack extension direction vectors are defined. Possible values are CRACK_NORMAL and Q_VECTORS.

symmetric

A Boolean specifying whether the crack is defined on a half model (about a symmetry plane) or whether it is defined on the whole model. The default value is OFF.

listOfRegions

A Boolean specifying whether the regions specified by crackFront and crackTip are specified using a single region or tuples of region objects. The default value is OFF.

crackFrontName

A String specifying the name of the crack-front region generated from the tuple of regions specifying the crack-front region. This argument is valid only when listOfRegions is ON. The default value is *name*+Front.

crackTipName

A String specifying the name of the crack-tip region generated from the tuple of regions specifying the crack-tip region. This parameter is valid only when *listOfRegions*=ON. The default value is *name*+Tip.

crackNormal

A sequence of sequences of Floats specifying the two points of the vector that describes the crack normal direction. Each point is defined by a tuple of two or three coordinates indicating its position. This argument is required only when *extensionDirectionMethod*=CRACK_NORMAL. The default value is an empty sequence.

qVectors

A sequence of sequences of sequences of Floats specifying the vectors that indicate the set of crack extension directions. Each vector is described by a tuple of two points, and each point is described by a tuple of two or three coordinates indicating its position. This argument is required only when *extensionDirectionMethod*=Q_VECTORS. The default value is an empty sequence.

midNodePosition

A Float specifying the position of the midside node along the edges of the second-order elements that radiate from the crack tip. Possible values are 0.0 << midNodeParameter << 1.0. The default value is 0.5.

collapsedElementAtTip

A SymbolicConstant specifying the crack-tip singularity. Possible values are NONE, SINGLE_NODE, and DUPLICATE_NODES. The default value is NONE.

Returns:
A ContourIntegral object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.ContourIntegral
mdb.models[name].rootAssembly.engineeringFeatures.ContourIntegral
EngineeringFeature.DebondVCCT(name: str, initiationStep: str, surfToSurfInteraction: str, debondingForceAmplitude: SymbolicConstantType = 'STEP', printToDATFrequency: int = 1) DebondVCCT[source]#

This method creates a DebondVCCT object. Although the constructor is available both for parts and for the assembly, DebondVCCT objects are currently supported only under the assembly.

Parameters:
name

A String specifying the repository key.

initiationStep

A String specifying the name of the step in which the DebondVCCT object is created.

surfToSurfInteraction

A String specifying the name of the SurfaceToSurfaceContactStd object that defines the surface to surface interaction for the crack surfaces.

debondingForceAmplitude

A SymbolicConstant specifying whether the debond force between the two surfaces at the crack tip is to be released immediately or gradually during the following increment after debonding. Possible values are STEP and RAMP. The default value is STEP.

printToDATFrequency

An Int specifying the frequency at which output will be printed to DAT file. The default value is 1.

Returns:
A DebondVCCT object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.DebondVCCT
mdb.models[name].rootAssembly.engineeringFeatures.DebondVCCT
EngineeringFeature.DiscreteFastener(name: str, region: Region, influenceRadius: SymbolicConstantType | float, ur1: BooleanType = 1, ur2: BooleanType = 1, ur3: BooleanType = 1, coupling: SymbolicConstantType = 'CONTINUUM', weightingMethod: SymbolicConstantType = 'UNIFORM', localCsys: int | None = None) DiscreteFastener[source]#

This method creates a DiscreteFastener object. Although the constructor is available both for parts and for the assembly, DiscreteFastener objects are currently supported only under the assembly.

Parameters:
name

A String specifying the repository key.

region

A Region object specifying the region to which the fastener is applied.

influenceRadius

The SymbolicConstant WHOLE_SURFACE or a Float specifying the coupling influence radius.

ur1

A Boolean specifying whether to constrain rotational displacement component about the 1-direction. The default value is ON.

ur2

A Boolean specifying whether to constrain rotational displacement component about the 2-direction. The default value is ON.

ur3

A Boolean specifying whether to constrain rotational displacement component about the 3-direction. The default value is ON.

coupling

A SymbolicConstant specifying the coupling method used to couple the displacement and rotation of each attachment point to the average motion of the surface nodes within the radius of influence from the fastening point. Possible values are CONTINUUM and STRUCTURAL. The default value is CONTINUUM.

weightingMethod

A SymbolicConstant specifying the weighting scheme to be used to weight the contribution of the displacements of the surface nodes within the radius of influence to the motion of the fastening point. UNIFORM, LINEAR, QUADRATIC, and CUBIC indicate uniform, linear decreasing, quadratic polynomial decreasing, and cubic polynomial monotonic decreasing weight distributions. Possible values are UNIFORM, LINEAR, QUADRATIC, and CUBIC. The default value is UNIFORM.

localCsys

None or a DatumCsys object specifying the local coordinate system of fastener couplings. If *localCsys*=None, couplings are defined in the global coordinate system. When this member is queried, it returns an Int. The default value is None.

Returns:
A DiscreteFastener object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.DiscreteFastener
mdb.models[name].rootAssembly.engineeringFeatures.DiscreteFastener
EngineeringFeature.HeatCapacitance(name: str, region: Region, table: tuple, temperatureDependency: BooleanType = 0, dependencies: int = 0) HeatCapacitance[source]#

This method creates a HeatCapacitance object.

Parameters:
name

A String specifying the repository key.

region

A Region object specifying the region to which the heat capacitance is applied.

table

A sequence of sequences of Floats specifying heat capacitance properties. The items in the table data are described below.

temperatureDependency

A Boolean specifying whether the data depend on temperature. The default value is OFF.

dependencies

An Int specifying the number of field variable dependencies. The default value is 0.

Returns:
A HeatCapacitance object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.HeatCapacitance
mdb.models[name].rootAssembly.engineeringFeatures.HeatCapacitance
EngineeringFeature.NonstructuralMass(name: str, region: Region, units: SymbolicConstantType, magnitude: float, distribution: SymbolicConstantType = 'MASS_PROPORTIONAL') NonstructuralMass[source]#

This method creates a NonstructuralMass object.

Parameters:
name

A String specifying the repository key.

region

A Region object specifying the region to which the mass is applied.

units

A SymbolicConstant specifying the units used to specify the nonstructural mass. Possible values are TOTAL_MASS, MASS_PER_VOLUME, MASS_PER_AREA, and MASS_PER_LENGTH.

magnitude

A Float specifying the mass magnitude.

distribution

A SymbolicConstant specifying the distribution of the nonstructural mass. Possible values are MASS_PROPORTIONAL and VOLUME_PROPORTIONAL. The default value is MASS_PROPORTIONAL.The distribution argument applies only when *units*=TOTAL_MASS.

Returns:
A NonstructuralMass object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.NonstructuralMass
mdb.models[name].rootAssembly.engineeringFeatures.NonstructuralMass
EngineeringFeature.PointFastener(name: str, region: Region, physicalRadius: float, directionVector: tuple | None = None, targetSurfaces: RegionArray = 'MODEL', ur1: BooleanType = 1, ur2: BooleanType = 1, ur3: BooleanType = 1, attachmentMethod: SymbolicConstantType = 'FACETOFACE', influenceRadius: SymbolicConstantType | float = 'DEFAULT', searchRadius: SymbolicConstantType | float = 'DEFAULT', maximumLayers: SymbolicConstantType = 'ALL', coupling: SymbolicConstantType = 'CONTINUUM', weightingMethod: SymbolicConstantType = 'UNIFORM', additionalMass: float = 0, adjustOrientation: BooleanType = 1, localCsys: int | None = None, connectionType: SymbolicConstantType = 'CONNECTOR', sectionName: str = '', connectorOrientationLocalCsys1: int | None = None, axis1: SymbolicConstantType = 'AXIS_1', angle1: float = 0, orient2SameAs1: BooleanType = 1, connectorOrientationLocalCsys2: int | None = None, axis2: SymbolicConstantType = 'AXIS_1', angle2: float = 0, unsorted: BooleanType = 0) PointFastener[source]#

This method creates a PointFastener object. Although the constructor is available both for parts and for the assembly, PointFastener objects are currently supported only under the assembly.

Parameters:
name

A String specifying the repository key.

region

A Region object specifying the region to which fasteners are applied.

physicalRadius

A Float specifying the physical fastener radius.

directionVector

A VertexArray object of length 2 specifying the direction of projection. Instead of through a ConstrainedSketchVertex, each point may be specified through a tuple of coordinates. The default value is None.

targetSurfaces

A RegionArray object specifying surfaces to be fastened. The default value is MODEL.

ur1

A Boolean specifying whether to constrain rotational displacement component about the 1-direction. The default value is ON.

ur2

A Boolean specifying whether to constrain rotational displacement component about the 2-direction. The default value is ON.

ur3

A Boolean specifying whether to constrain rotational displacement component about the 3-direction. The default value is ON.

attachmentMethod

A SymbolicConstant specifying the method used to locate points for attaching fasteners. Possible values are FACETOFACE, EDGETOFACE, FACETOEDGE, and EDGETOEDGE. The default value is FACETOFACE.

influenceRadius

The SymbolicConstant DEFAULT or a Float specifying the maximum distance from the projection point on a connected surface within which the nodes on that surface must lie to contribute to the motion of the projection point. If the value is DEFAULT, a radius is computed from the fastener diameter and the surface facet lengths. The default value is DEFAULT.

searchRadius

The SymbolicConstant DEFAULT or a Float specifying the distance from the positioning points within which the connected points must lie. The default value is DEFAULT.

maximumLayers

The SymbolicConstant ALL or an Int specifying the maximum number of layers for each fastener. If the value is ALL, the maximum possible number of layers within the searchRadius will be used for each fastener. The default value is ALL.

coupling

A SymbolicConstant specifying the coupling method used to couple the displacement and rotation of each attachment point to the average motion of the surface nodes within the radius of influence from the fastener projection point. Possible values are CONTINUUM and STRUCTURAL. The default value is CONTINUUM.

weightingMethod

A SymbolicConstant specifying the weighting scheme to be used to weight the contribution of the displacements of the surface nodes within the radius of influence to the motion of the fastener projection point. UNIFORM, LINEAR, QUADRATIC, and CUBIC indicate uniform, linear decreasing, quadratic polynomial decreasing, and cubic polynomial monotonic decreasing weight distributions. Possible values are UNIFORM, LINEAR, QUADRATIC, and CUBIC. The default value is UNIFORM.

additionalMass

A Float specifying the mass that will be distributed to fastener attachment points. The default value is 0.0.

adjustOrientation

A Boolean specifying whether to adjust localCsys such that the local z-axis for each fastener is normal to the surface that is closest to the reference node for that fastener. The default value is ON.

localCsys

None or a DatumCsys object specifying the local coordinate system. If *localCsys*=None, the global coordinate system is used. When this member is queried, it returns an Int. The default value is None.

connectionType

A SymbolicConstant specifying the fastener connection type. Possible values are CONNECTOR and BEAM_MPC. The default value is CONNECTOR.

sectionName

A String specifying the connector section assigned to generated connectors. The default value is an empty string.

connectorOrientationLocalCsys1

None or a DatumCsys object specifying the local coordinate system of the first connector point in generated connectors. If *connectorOrientationLocalCsys1*=None, the degrees of freedom are defined in the global coordinate system. When this member is queried, it returns an Int. The default value is None.

axis1

A SymbolicConstant specifying the axis of a datum coordinate system about which an additional rotation is applied for the first point in generated connectors. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

angle1

A Float specifying the angle of the additional rotation for the first point in generated connectors. The default value is 0.0.

orient2SameAs1

A Boolean specifying whether or not the second connector point in generated connectors is to use the same local coordinate system, axis, and angle as the first point. The default value is ON.

connectorOrientationLocalCsys2

None or a DatumCsys object specifying the local coordinate system of the second connector point in generated connectors. If *connectorOrientationLocalCsys2*=None, the degrees of freedom are defined in the global coordinate system. When this member is queried, it returns an Int. The default value is None.

axis2

A SymbolicConstant specifying the axis of a datum coordinate system about which an additional rotation is applied for the second point in generated connectors. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

angle2

A Float specifying the angle of the additional rotation for the second point in generated connectors. The default value is 0.0.

unsorted

A Boolean specifying whether the analysis product should leave targetSurfaces in the given unsorted order, or sort them by proximity to determine the connectivity of fastening points. The default value is OFF.

Returns:
A PointFastener object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.PointFastener
mdb.models[name].rootAssembly.engineeringFeatures.PointFastener
EngineeringFeature.PointMassInertia(name: str, region: Region, mass: float = 0, mass1: float = 0, mass2: float = 0, mass3: float = 0, i11: float = 0, i22: float = 0, i33: float = 0, i12: float = 0, i13: float = 0, i23: float = 0, localCsys: str | None = None, alpha: float = 0, composite: float = 0) PointMassInertia[source]#

This method creates a PointMassInertia object.

Parameters:
name

A String specifying the repository key.

region

A Region object specifying the region to which the mass or rotary inertia is applied.

mass

A Float specifying the mass magnitude for isotropic mass. This parameter cannot be specified when anisotropic mass terms are specified. The default value is 0.0.

mass1

A Float specifying the mass in the 1-direction for anisotropic mass. This parameter cannot be specified when isotropic mass is also specified. The default value is 0.0.

mass2

A Float specifying the mass in the 2-direction for anisotropic mass. This parameter cannot be specified when isotropic mass is also specified. The default value is 0.0.

mass3

A Float specifying the mass in the 3-direction for anisotropic mass. This parameter cannot be specified when isotropic mass is also specified. The default value is 0.0.

i11

A Float specifying the rotary inertia about the local 1-axis, I11I11. The default value is 0.0.

i22

A Float specifying the rotary inertia about the local 2-axis, I22I22. The default value is 0.0.

i33

A Float specifying the rotary inertia about the local 3-axis, I33I33. The default value is 0.0.

i12

A Float specifying the product of inertia, I12I12. The default value is 0.0.

i13

A Float specifying the product of inertia, I13I13. The default value is 0.0.

i23

A Float specifying the product of inertia, I23I23. The default value is 0.0.

localCsys

None or a DatumCsys object specifying the local coordinate system for the anisotropic mass terms (when specified), and the rotary inertia (when specified). If *localCsys*=None, the anisotropic mass and rotary inertia data are defined in the global coordinate system. The default value is None.

alpha

A Float specifying the alpha damping magnitude. The default value is 0.0.This argument applies only to Abaqus/Standard analyses.

composite

A Float specifying the composite damping magnitude. The default value is 0.0.This argument applies only to Abaqus/Standard analyses.

Returns:
A PointMassInertia object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.PointMassInertia
mdb.models[name].rootAssembly.engineeringFeatures.PointMassInertia
EngineeringFeature.SpringDashpotToGround(name: str, region: Region, dof: int, orientation: str | None = None, springBehavior: BooleanType = 0, dashpotBehavior: BooleanType = 0, springStiffness: float = 0, dashpotCoefficient: float = 0) SpringDashpotToGround[source]#

This method creates a SpringDashpotToGround object.

Parameters:
name

A String specifying the repository key.

region

A Region object specifying the region to which the springs and/or dashpots are applied.

dof

An Int specifying the degree of freedom associated with the spring and dashpot behaviors.

orientation

None or a DatumCsys object specifying the local directions for the spring and/or dashpot. If *orientation*=None, the spring and/or dashpot data are defined in the global coordinate system. The default value is None.

springBehavior

A Boolean specifying whether to apply spring behavior to the selected points. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

dashpotBehavior

A Boolean specifying whether to apply dashpot behavior to the selected points. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

springStiffness

A Float specifying the force per relative displacement for the spring. The default value is 0.0.

dashpotCoefficient

A Float specifying the force per relative velocity for the dashpot. The default value is 0.0.

Returns:
A SpringDashpotToGround object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.SpringDashpotToGround
mdb.models[name].rootAssembly.engineeringFeatures            - .SpringDashpotToGround
EngineeringFeature.TwoPointSpringDashpot(name: str, regionPairs: tuple, axis: SymbolicConstantType, dof1: int = 0, dof2: int = 0, orientation: str | None = None, springBehavior: BooleanType = 0, dashpotBehavior: BooleanType = 0, springStiffness: float = 0, dashpotCoefficient: float = 0) TwoPointSpringDashpot[source]#

This method creates a TwoPointSpringDashpot object.

Parameters:
name

A String specifying the repository key.

regionPairs

A sequence of pairs of Region objects specifying the points between which the springs and/or dashpots are applied.

axis

A SymbolicConstant specifying whether the axis of the springs and/or dashpots follows the rotation of the nodes or is in a specified direction. Possible values are NODAL_LINE and FIXED_DOF.

dof1

An Int specifying the degree of freedom with which the springs and/or dashpots are associated at their first points. The dof1 argument applies only when *axis*=FIXED_DOFS. The default value is 0.

dof2

An Int specifying the degree of freedom with which the springs and/or dashpots are associated at their second points. The dof2 argument applies only when *axis*=FIXED_DOFS. The default value is 0.

orientation

None or a DatumCsys object specifying the local directions for the spring and/or dashpot. If orientation*=None, the spring and/or dashpot data are defined in the global coordinate system. The default value is None.The *orientation argument applies only when *axis*=FIXED_DOFS.

springBehavior

A Boolean specifying whether to apply spring behavior to the selected point pairs. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

dashpotBehavior

A Boolean specifying whether to apply dashpot behavior to the selected point pairs. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

springStiffness

A Float specifying the force per relative displacement for the springs. The default value is 0.0.

dashpotCoefficient

A Float specifying the force per relative velocity for the dashpots. The default value is 0.0.

Returns:
A TwoPointSpringDashpot object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.TwoPointSpringDashpot
mdb.models[name].rootAssembly.engineeringFeatures            - .TwoPointSpringDashpot
EngineeringFeature.XFEMCrack(name: str, crackDomain: ~abaqus.Region.Region.Region, allowCrackGrowth: ~abaqusConstants.BooleanType = 1, crackLocation: ~abaqus.Region.Region.Region = <abaqus.Region.Region.Region object>, singularityCalcRadius: float | None = None, interactionProperty: str = '', elemId: tuple = (), nodeId: tuple = (), hasCrackFront: tuple = (), crackPlaneDist: tuple = (), crackFrontDist: tuple = (), autoDetectValue: str = '') XFEMCrack[source]#

This method creates a XFEMCrack object. Although the constructor is available both for parts and for the assembly, XFEMCrack objects are currently supported only under the assembly.

Parameters:
name

A String specifying the repository key.

crackDomain

A Region object specifying the region that contains the crack or is likely to contain the crack.

allowCrackGrowth

A Boolean specifying whether the crack is allowed to propagate (grow). The default value is ON.

crackLocation

A Region object specifying the initial crack location. This parameter is required when *allowCrackGrowth*=OFF.

singularityCalcRadius

None or a Float specifying the radius from the crack tips within which the elements are used for crack singularity calculations. This argument applies only when *allowCrackGrowth*=OFF. The default value is None.

interactionProperty

A String specifying the name of the ContactProperty object that defines the contact properties for the crack surfaces. The default value is an empty string.

elemId

A sequence of Ints specifying the labels of the elements that are intersected by the initial crack location. This argument is used only by the input file reader.

nodeId

A sequence of Ints specifying the position of a node in the corresponding element connectivity. This argument is used only by the input file reader.

hasCrackFront

A sequence of Ints specifying the values indicating the inclusion/exclusion of the crackFrontDist values. A zero value indicates that crackFrontDist is not specified for the ith pair elemId and nodeId. This argument is used only by the input file reader.

crackPlaneDist

A sequence of Floats specifying the values of the first signed distance function. This argument is used by the input file reader.

crackFrontDist

A sequence of Floats specifying the values of the second signed distance function. This argument is used only by the input file reader.

autoDetectValue

An integer specifying the number of element layers around the crack location, to which the crack domain is shrunk.

Returns:
A XFEMCrack object.

Notes

This function can be accessed by:

mdb.models[name].parts[name].engineeringFeatures.XFEMCrack
mdb.models[name].rootAssembly.engineeringFeatures.XFEMCrack

Object features#

Crack#

class Crack[source]#

The Crack object is the abstract base type for ContourIntegral and future crack objects.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.cracks[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.cracks[name]
Attributes:
name: str

A String specifying the repository key.

suppressed: Boolean

A Boolean specifying whether the crack is suppressed or not. The default value is OFF.

Methods

resume()

This method resumes the crack that was previously suppressed.

suppress()

This method suppresses the crack.

resume()[source]#

This method resumes the crack that was previously suppressed.

suppress()[source]#

This method suppresses the crack.

Fastener#

class Fastener[source]#

The Fastener object is the abstract base type for PointFastener, DiscreteFastener, and AssembledFastener.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.fasteners[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.fasteners[name]
Attributes:
name: str

A String specifying the repository key.

suppressed: Boolean

A Boolean specifying whether the fastener is suppressed or not. The default value is OFF.

Methods

resume()

This method resumes the fastener that was previously suppressed.

suppress()

This method suppresses the fastener.

resume()[source]#

This method resumes the fastener that was previously suppressed.

suppress()[source]#

This method suppresses the fastener.

Inertia#

class Inertia[source]#

The Inertia object is the abstract base type for HeatCapacitance, NonstructuralMass, and PointMassInertia.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.inertias[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.inertias[name]
Attributes:
name: str

A String specifying the repository key.

suppressed: Boolean

A Boolean specifying whether the inertia is suppressed or not. The default value is OFF.

Methods

resume()

This method resumes the inertia that was previously suppressed.

suppress()

This method suppresses the inertia.

resume()[source]#

This method resumes the inertia that was previously suppressed.

suppress()[source]#

This method suppresses the inertia.

SpringDashpot#

class SpringDashpot[source]#

The SpringDashpot object is the abstract base type for the SpringDashpotToGround and TwoPointSpringDashpot objects.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.springDashpots[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.springDashpots[name]
Attributes:
name: str

A String specifying the repository key.

suppressed: Boolean

A Boolean specifying whether the spring/dashpot is suppressed or not. The default value is OFF.

Methods

resume()

This method resumes the spring/dashpot that was previously suppressed.

suppress()

This method suppresses the spring/dashpot.

resume()[source]#

This method resumes the spring/dashpot that was previously suppressed.

suppress()[source]#

This method suppresses the spring/dashpot.

AssembledFastener#

class AssembledFastener(name: str, region: Region, templateModel: str, controlSet: Region, templateSurfaces: tuple, assignedSurfaces: tuple, propertyPrefix: str, orientMethod: SymbolicConstantType = 'NORMALS', localCsys: int | None = None, scriptName: str = '')[source]#

The AssembledFastener object defines an assembled fastener. The AssembledFastener object is derived from the Fastener object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.fasteners[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.fasteners[name]
Attributes:
suppressed: Boolean

A Boolean specifying whether the fastener is suppressed or not. The default value is OFF.

Methods

setValues([orientMethod, localCsys, scriptName])

This method modifies the AssembledFastener object.

setValues(orientMethod: SymbolicConstantType = 'NORMALS', localCsys: int | None = None, scriptName: str = '')[source]#

This method modifies the AssembledFastener object.

Parameters:
orientMethod

A SymbolicConstant specifying the method used to orient the virtual instances of the template model at each attachment point. Possible values are NORMALS and CSYS. The default value is NORMALS.

localCsys

None or a DatumCsys object specifying the local coordinate system. If *localCsys*=None, the global coordinate system is used. When this member is queried, it returns an Int. The default value is None.This argument applies only when *orientMethod*=CSYS.

scriptName

A String specifying the name of the property generation script. The default value is an empty string.

ContourIntegral#

class ContourIntegral(name: str, crackFront: RegionArray, crackTip: RegionArray, extensionDirectionMethod: SymbolicConstantType, symmetric: BooleanType = 0, listOfRegions: BooleanType = 0, crackFrontName: str = '', crackTipName: str = '', crackNormal: tuple = (), qVectors: tuple = (), midNodePosition: float = 0, collapsedElementAtTip: SymbolicConstantType = 'NONE')[source]#

The ContourIntegral object defines contour integral objects on an region. Currently only assembly regions are supported. The ContourIntegral object is derived from the Crack object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.cracks[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.cracks[name]

The corresponding analysis keywords are:

  • CONTOUR INTEGRAL

Attributes:
suppressed: Boolean

A Boolean specifying whether the crack is suppressed or not. The default value is OFF.

Methods

setValues([symmetric, listOfRegions, ...])

This method modifies the ContourIntegral object.

setValues(symmetric: BooleanType = 0, listOfRegions: BooleanType = 0, crackFrontName: str = '', crackTipName: str = '', crackNormal: tuple = (), qVectors: tuple = (), midNodePosition: float = 0, collapsedElementAtTip: SymbolicConstantType = 'NONE')[source]#

This method modifies the ContourIntegral object.

Parameters:
symmetric

A Boolean specifying whether the crack is defined on a half model (about a symmetry plane) or whether it is defined on the whole model. The default value is OFF.

listOfRegions

A Boolean specifying whether the regions specified by crackFront and crackTip are specified using a single region or tuples of region objects. The default value is OFF.

crackFrontName

A String specifying the name of the crack-front region generated from the tuple of regions specifying the crack-front region. This argument is valid only when listOfRegions is ON. The default value is *name*+Front.

crackTipName

A String specifying the name of the crack-tip region generated from the tuple of regions specifying the crack-tip region. This parameter is valid only when *listOfRegions*=ON. The default value is *name*+Tip.

crackNormal

A sequence of sequences of Floats specifying the two points of the vector that describes the crack normal direction. Each point is defined by a tuple of two or three coordinates indicating its position. This argument is required only when *extensionDirectionMethod*=CRACK_NORMAL. The default value is an empty sequence.

qVectors

A sequence of sequences of sequences of Floats specifying the vectors that indicate the set of crack extension directions. Each vector is described by a tuple of two points, and each point is described by a tuple of two or three coordinates indicating its position. This argument is required only when *extensionDirectionMethod*=Q_VECTORS. The default value is an empty sequence.

midNodePosition

A Float specifying the position of the midside node along the edges of the second-order elements that radiate from the crack tip. Possible values are 0.0 << midNodeParameter << 1.0. The default value is 0.5.

collapsedElementAtTip

A SymbolicConstant specifying the crack-tip singularity. Possible values are NONE, SINGLE_NODE, and DUPLICATE_NODES. The default value is NONE.

DebondVCCT#

class DebondVCCT(name: str, initiationStep: str, surfToSurfInteraction: str, debondingForceAmplitude: SymbolicConstantType = 'STEP', printToDATFrequency: int = 1)[source]#

The DebondVCCT object defines the parameters needed to activate crack propagation using VCCT. The DebondVCCT object is derived from the Crack object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.cracks[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.cracks[name]

The corresponding analysis keywords are:

  • DEBOND

Attributes:
suppressed: Boolean

A Boolean specifying whether the crack is suppressed or not. The default value is OFF.

Methods

setValues([debondingForceAmplitude, ...])

This method modifies the DebondVCCT object.

setValues(debondingForceAmplitude: SymbolicConstantType = 'STEP', printToDATFrequency: int = 1)[source]#

This method modifies the DebondVCCT object.

Parameters:
debondingForceAmplitude

A SymbolicConstant specifying whether the debond force between the two surfaces at the crack tip is to be released immediately or gradually during the following increment after debonding. Possible values are STEP and RAMP. The default value is STEP.

printToDATFrequency

An Int specifying the frequency at which output will be printed to DAT file. The default value is 1.

DiscreteFastener#

class DiscreteFastener(name: str, region: Region, influenceRadius: SymbolicConstantType | float, ur1: BooleanType = 1, ur2: BooleanType = 1, ur3: BooleanType = 1, coupling: SymbolicConstantType = 'CONTINUUM', weightingMethod: SymbolicConstantType = 'UNIFORM', localCsys: int | None = None)[source]#

The DiscreteFastener object defines a discrete fastener. The DiscreteFastener object is derived from the Fastener object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.fasteners[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.fasteners[name]

The corresponding analysis keywords are:

  • COUPLING

Attributes:
suppressed: Boolean

A Boolean specifying whether the fastener is suppressed or not. The default value is OFF.

Methods

setValues([ur1, ur2, ur3, coupling, ...])

This method modifies the DiscreteFastener object.

setValues(ur1: BooleanType = 1, ur2: BooleanType = 1, ur3: BooleanType = 1, coupling: SymbolicConstantType = 'CONTINUUM', weightingMethod: SymbolicConstantType = 'UNIFORM', localCsys: int | None = None)[source]#

This method modifies the DiscreteFastener object.

Parameters:
ur1

A Boolean specifying whether to constrain rotational displacement component about the 1-direction. The default value is ON.

ur2

A Boolean specifying whether to constrain rotational displacement component about the 2-direction. The default value is ON.

ur3

A Boolean specifying whether to constrain rotational displacement component about the 3-direction. The default value is ON.

coupling

A SymbolicConstant specifying the coupling method used to couple the displacement and rotation of each attachment point to the average motion of the surface nodes within the radius of influence from the fastening point. Possible values are CONTINUUM and STRUCTURAL. The default value is CONTINUUM.

weightingMethod

A SymbolicConstant specifying the weighting scheme to be used to weight the contribution of the displacements of the surface nodes within the radius of influence to the motion of the fastening point. UNIFORM, LINEAR, QUADRATIC, and CUBIC indicate uniform, linear decreasing, quadratic polynomial decreasing, and cubic polynomial monotonic decreasing weight distributions. Possible values are UNIFORM, LINEAR, QUADRATIC, and CUBIC. The default value is UNIFORM.

localCsys

None or a DatumCsys object specifying the local coordinate system of fastener couplings. If *localCsys*=None, couplings are defined in the global coordinate system. When this member is queried, it returns an Int. The default value is None.

EngineeringFeatureBase#

class EngineeringFeatureBase[source]#

The EngineeringFeature object is a container for various specific engineering feature repositories. The EngineeringFeature object has no explicit constructor or methods.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures
import assembly
mdb.models[name].rootAssembly.engineeringFeatures
Attributes:
inertias: dict[str, Inertia]

A repository of Inertia objects.

cracks: dict[str, Crack]

A repository of Crack objects.

fasteners: dict[str, Fastener]

A repository of Fastener objects.

springDashpots: dict[str, SpringDashpot]

A repository of SpringDashpot objects.

Methods

assignSeam(regions)

This method creates a seam crack along an edge or a face.

deleteSeam(regions)

This method deletes a seam crack.

assignSeam(regions: tuple[Region])[source]#

This method creates a seam crack along an edge or a face.

Parameters:
regions

A sequence of Region objects specifying the domain of the seam crack. The Region objects must be faces or edges.

deleteSeam(regions: tuple[Region])[source]#

This method deletes a seam crack.

Parameters:
regions

A sequence of Region objects specifying the domain of the seam crack. The Region objects must be faces or edges.

HeatCapacitance#

class HeatCapacitance(name: str, region: Region, table: tuple, temperatureDependency: BooleanType = 0, dependencies: int = 0)[source]#

The HeatCapacitance object defines point heat capacitance on a part or an assembly region. The HeatCapacitance object is derived from the Inertia object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.inertias[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.inertias[name]

The table data for this object are:
The table data specify the following:
    - Heat capacitance magnitude, ρcVρ⁢c⁢V (density × specific heat × volume).
    - Temperature, if the data depend on temperature.
    - Value of the first field variable, if the data depend on field variables.
    - Value of the second field variable.
    - Etc.

The corresponding analysis keywords are:

  • HEATCAP

Attributes:
suppressed: Boolean

A Boolean specifying whether the inertia is suppressed or not. The default value is OFF.

Methods

setValues([temperatureDependency, dependencies])

This method modifies the HeatCapacitance object.

setValues(temperatureDependency: BooleanType = 0, dependencies: int = 0)[source]#

This method modifies the HeatCapacitance object.

Parameters:
temperatureDependency

A Boolean specifying whether the data depend on temperature. The default value is OFF.

dependencies

An Int specifying the number of field variable dependencies. The default value is 0.

NonstructuralMass#

class NonstructuralMass(name: str, region: Region, units: SymbolicConstantType, magnitude: float, distribution: SymbolicConstantType = 'MASS_PROPORTIONAL')[source]#

The NonstructuralMass object defines the mass contribution from nonstructural features into the model. The NonstructuralMass object is derived from the Inertia object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.inertias[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.inertias[name]

The corresponding analysis keywords are:

  • NONSTRUCTURAL MASS

Attributes:
suppressed: Boolean

A Boolean specifying whether the inertia is suppressed or not. The default value is OFF.

Methods

setValues([distribution])

This method modifies the NonstructuralMass object.

setValues(distribution: SymbolicConstantType = 'MASS_PROPORTIONAL')[source]#

This method modifies the NonstructuralMass object.

Parameters:
distribution

A SymbolicConstant specifying the distribution of the nonstructural mass. Possible values are MASS_PROPORTIONAL and VOLUME_PROPORTIONAL. The default value is MASS_PROPORTIONAL.The distribution argument applies only when *units*=TOTAL_MASS.

PointFastener#

class PointFastener(name: str, region: Region, physicalRadius: float, directionVector: tuple | None = None, targetSurfaces: RegionArray = 'MODEL', ur1: BooleanType = 1, ur2: BooleanType = 1, ur3: BooleanType = 1, attachmentMethod: SymbolicConstantType = 'FACETOFACE', influenceRadius: SymbolicConstantType | float = 'DEFAULT', searchRadius: SymbolicConstantType | float = 'DEFAULT', maximumLayers: SymbolicConstantType = 'ALL', coupling: SymbolicConstantType = 'CONTINUUM', weightingMethod: SymbolicConstantType = 'UNIFORM', additionalMass: float = 0, adjustOrientation: BooleanType = 1, localCsys: int | None = None, connectionType: SymbolicConstantType = 'CONNECTOR', sectionName: str = '', connectorOrientationLocalCsys1: int | None = None, axis1: SymbolicConstantType = 'AXIS_1', angle1: float = 0, orient2SameAs1: BooleanType = 1, connectorOrientationLocalCsys2: int | None = None, axis2: SymbolicConstantType = 'AXIS_1', angle2: float = 0, unsorted: BooleanType = 0)[source]#

The PointFastener object defines a point fastener. The PointFastener object is derived from the Fastener object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.fasteners[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.fasteners[name]

The corresponding analysis keywords are:

  • FASTENER

Attributes:
suppressed: Boolean

A Boolean specifying whether the fastener is suppressed or not. The default value is OFF.

Methods

setValues([directionVector, targetSurfaces, ...])

This method modifies the PointFastener object.

setValues(directionVector: tuple | None = None, targetSurfaces: RegionArray = 'MODEL', ur1: BooleanType = 1, ur2: BooleanType = 1, ur3: BooleanType = 1, attachmentMethod: SymbolicConstantType = 'FACETOFACE', influenceRadius: SymbolicConstantType | float = 'DEFAULT', searchRadius: SymbolicConstantType | float = 'DEFAULT', maximumLayers: SymbolicConstantType = 'ALL', coupling: SymbolicConstantType = 'CONTINUUM', weightingMethod: SymbolicConstantType = 'UNIFORM', additionalMass: float = 0, adjustOrientation: BooleanType = 1, localCsys: int | None = None, connectionType: SymbolicConstantType = 'CONNECTOR', sectionName: str = '', connectorOrientationLocalCsys1: int | None = None, axis1: SymbolicConstantType = 'AXIS_1', angle1: float = 0, orient2SameAs1: BooleanType = 1, connectorOrientationLocalCsys2: int | None = None, axis2: SymbolicConstantType = 'AXIS_1', angle2: float = 0, unsorted: BooleanType = 0)[source]#

This method modifies the PointFastener object.

Parameters:
directionVector

A VertexArray object of length 2 specifying the direction of projection. Instead of through a ConstrainedSketchVertex, each point may be specified through a tuple of coordinates. The default value is None.

targetSurfaces

A RegionArray object specifying surfaces to be fastened. The default value is MODEL.

ur1

A Boolean specifying whether to constrain rotational displacement component about the 1-direction. The default value is ON.

ur2

A Boolean specifying whether to constrain rotational displacement component about the 2-direction. The default value is ON.

ur3

A Boolean specifying whether to constrain rotational displacement component about the 3-direction. The default value is ON.

attachmentMethod

A SymbolicConstant specifying the method used to locate points for attaching fasteners. Possible values are FACETOFACE, EDGETOFACE, FACETOEDGE, and EDGETOEDGE. The default value is FACETOFACE.

influenceRadius

The SymbolicConstant DEFAULT or a Float specifying the maximum distance from the projection point on a connected surface within which the nodes on that surface must lie to contribute to the motion of the projection point. If the value is DEFAULT, a radius is computed from the fastener diameter and the surface facet lengths. The default value is DEFAULT.

searchRadius

The SymbolicConstant DEFAULT or a Float specifying the distance from the positioning points within which the connected points must lie. The default value is DEFAULT.

maximumLayers

The SymbolicConstant ALL or an Int specifying the maximum number of layers for each fastener. If the value is ALL, the maximum possible number of layers within the searchRadius will be used for each fastener. The default value is ALL.

coupling

A SymbolicConstant specifying the coupling method used to couple the displacement and rotation of each attachment point to the average motion of the surface nodes within the radius of influence from the fastener projection point. Possible values are CONTINUUM and STRUCTURAL. The default value is CONTINUUM.

weightingMethod

A SymbolicConstant specifying the weighting scheme to be used to weight the contribution of the displacements of the surface nodes within the radius of influence to the motion of the fastener projection point. UNIFORM, LINEAR, QUADRATIC, and CUBIC indicate uniform, linear decreasing, quadratic polynomial decreasing, and cubic polynomial monotonic decreasing weight distributions. Possible values are UNIFORM, LINEAR, QUADRATIC, and CUBIC. The default value is UNIFORM.

additionalMass

A Float specifying the mass that will be distributed to fastener attachment points. The default value is 0.0.

adjustOrientation

A Boolean specifying whether to adjust localCsys such that the local z-axis for each fastener is normal to the surface that is closest to the reference node for that fastener. The default value is ON.

localCsys

None or a DatumCsys object specifying the local coordinate system. If *localCsys*=None, the global coordinate system is used. When this member is queried, it returns an Int. The default value is None.

connectionType

A SymbolicConstant specifying the fastener connection type. Possible values are CONNECTOR and BEAM_MPC. The default value is CONNECTOR.

sectionName

A String specifying the connector section assigned to generated connectors. The default value is an empty string.

connectorOrientationLocalCsys1

None or a DatumCsys object specifying the local coordinate system of the first connector point in generated connectors. If *connectorOrientationLocalCsys1*=None, the degrees of freedom are defined in the global coordinate system. When this member is queried, it returns an Int. The default value is None.

axis1

A SymbolicConstant specifying the axis of a datum coordinate system about which an additional rotation is applied for the first point in generated connectors. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

angle1

A Float specifying the angle of the additional rotation for the first point in generated connectors. The default value is 0.0.

orient2SameAs1

A Boolean specifying whether or not the second connector point in generated connectors is to use the same local coordinate system, axis, and angle as the first point. The default value is ON.

connectorOrientationLocalCsys2

None or a DatumCsys object specifying the local coordinate system of the second connector point in generated connectors. If *connectorOrientationLocalCsys2*=None, the degrees of freedom are defined in the global coordinate system. When this member is queried, it returns an Int. The default value is None.

axis2

A SymbolicConstant specifying the axis of a datum coordinate system about which an additional rotation is applied for the second point in generated connectors. Possible values are AXIS_1, AXIS_2, and AXIS_3. The default value is AXIS_1.

angle2

A Float specifying the angle of the additional rotation for the second point in generated connectors. The default value is 0.0.

unsorted

A Boolean specifying whether the analysis product should leave targetSurfaces in the given unsorted order, or sort them by proximity to determine the connectivity of fastening points. The default value is OFF.

PointMassInertia#

class PointMassInertia(name: str, region: Region, mass: float = 0, mass1: float = 0, mass2: float = 0, mass3: float = 0, i11: float = 0, i22: float = 0, i33: float = 0, i12: float = 0, i13: float = 0, i23: float = 0, localCsys: str | None = None, alpha: float = 0, composite: float = 0)[source]#

The PointMassInertia object defines point masses and point rotary inertia on a part or an assembly region. The PointMassInertia object is derived from the Inertia object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.inertias[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.inertias[name]

The corresponding analysis keywords are:

  • MASS

Attributes:
suppressed: Boolean

A Boolean specifying whether the inertia is suppressed or not. The default value is OFF.

Methods

setValues([mass, mass1, mass2, mass3, i11, ...])

This method modifies the PointMassInertia object.

setValues(mass: float = 0, mass1: float = 0, mass2: float = 0, mass3: float = 0, i11: float = 0, i22: float = 0, i33: float = 0, i12: float = 0, i13: float = 0, i23: float = 0, localCsys: str | None = None, alpha: float = 0, composite: float = 0)[source]#

This method modifies the PointMassInertia object.

Parameters:
mass

A Float specifying the mass magnitude for isotropic mass. This parameter cannot be specified when anisotropic mass terms are specified. The default value is 0.0.

mass1

A Float specifying the mass in the 1-direction for anisotropic mass. This parameter cannot be specified when isotropic mass is also specified. The default value is 0.0.

mass2

A Float specifying the mass in the 2-direction for anisotropic mass. This parameter cannot be specified when isotropic mass is also specified. The default value is 0.0.

mass3

A Float specifying the mass in the 3-direction for anisotropic mass. This parameter cannot be specified when isotropic mass is also specified. The default value is 0.0.

i11

A Float specifying the rotary inertia about the local 1-axis, I11I11. The default value is 0.0.

i22

A Float specifying the rotary inertia about the local 2-axis, I22I22. The default value is 0.0.

i33

A Float specifying the rotary inertia about the local 3-axis, I33I33. The default value is 0.0.

i12

A Float specifying the product of inertia, I12I12. The default value is 0.0.

i13

A Float specifying the product of inertia, I13I13. The default value is 0.0.

i23

A Float specifying the product of inertia, I23I23. The default value is 0.0.

localCsys

None or a DatumCsys object specifying the local coordinate system for the anisotropic mass terms (when specified), and the rotary inertia (when specified). If *localCsys*=None, the anisotropic mass and rotary inertia data are defined in the global coordinate system. The default value is None.

alpha

A Float specifying the alpha damping magnitude. The default value is 0.0.This argument applies only to Abaqus/Standard analyses.

composite

A Float specifying the composite damping magnitude. The default value is 0.0.This argument applies only to Abaqus/Standard analyses.

SpringDashpotToGround#

class SpringDashpotToGround(name: str, region: Region, dof: int, orientation: str | None = None, springBehavior: BooleanType = 0, dashpotBehavior: BooleanType = 0, springStiffness: float = 0, dashpotCoefficient: float = 0)[source]#

The SpringDashpotToGround object defines springs and/or dashpots between points and ground on a part or an assembly region. The SpringDashpotToGround object is derived from the SpringDashpot object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.springDashpots[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.springDashpots[name]

The corresponding analysis keywords are:

  • ELEMENT
    • SPRING

    • DASHPOT

Attributes:
suppressed: Boolean

A Boolean specifying whether the spring/dashpot is suppressed or not. The default value is OFF.

Methods

setValues([orientation, springBehavior, ...])

This method modifies the SpringDashpotToGround object.

setValues(orientation: str | None = None, springBehavior: BooleanType = 0, dashpotBehavior: BooleanType = 0, springStiffness: float = 0, dashpotCoefficient: float = 0)[source]#

This method modifies the SpringDashpotToGround object.

Parameters:
orientation

None or a DatumCsys object specifying the local directions for the spring and/or dashpot. If *orientation*=None, the spring and/or dashpot data are defined in the global coordinate system. The default value is None.

springBehavior

A Boolean specifying whether to apply spring behavior to the selected points. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

dashpotBehavior

A Boolean specifying whether to apply dashpot behavior to the selected points. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

springStiffness

A Float specifying the force per relative displacement for the spring. The default value is 0.0.

dashpotCoefficient

A Float specifying the force per relative velocity for the dashpot. The default value is 0.0.

TwoPointSpringDashpot#

class TwoPointSpringDashpot(name: str, regionPairs: tuple, axis: SymbolicConstantType, dof1: int = 0, dof2: int = 0, orientation: str | None = None, springBehavior: BooleanType = 0, dashpotBehavior: BooleanType = 0, springStiffness: float = 0, dashpotCoefficient: float = 0)[source]#

The TwoPointSpringDashpot object defines springs and/or dashpots between two points on a part or an assembly. The TwoPointSpringDashpot object is derived from the SpringDashpot object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.springDashpots[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.springDashpots[name]

The corresponding analysis keywords are:

  • ELEMENT
    • SPRING

    • DASHPOT

Attributes:
suppressed: Boolean

A Boolean specifying whether the spring/dashpot is suppressed or not. The default value is OFF.

Methods

setValues([dof1, dof2, orientation, ...])

This method modifies the TwoPointSpringDashpot object.

setValues(dof1: int = 0, dof2: int = 0, orientation: str | None = None, springBehavior: BooleanType = 0, dashpotBehavior: BooleanType = 0, springStiffness: float = 0, dashpotCoefficient: float = 0)[source]#

This method modifies the TwoPointSpringDashpot object.

Parameters:
dof1

An Int specifying the degree of freedom with which the springs and/or dashpots are associated at their first points. The dof1 argument applies only when *axis*=FIXED_DOFS. The default value is 0.

dof2

An Int specifying the degree of freedom with which the springs and/or dashpots are associated at their second points. The dof2 argument applies only when *axis*=FIXED_DOFS. The default value is 0.

orientation

None or a DatumCsys object specifying the local directions for the spring and/or dashpot. If orientation*=None, the spring and/or dashpot data are defined in the global coordinate system. The default value is None.The *orientation argument applies only when *axis*=FIXED_DOFS.

springBehavior

A Boolean specifying whether to apply spring behavior to the selected point pairs. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

dashpotBehavior

A Boolean specifying whether to apply dashpot behavior to the selected point pairs. The default value is OFF.At least one of the arguments *springBehavior*=ON or *dashpotBehavior*=ON must be specified.

springStiffness

A Float specifying the force per relative displacement for the springs. The default value is 0.0.

dashpotCoefficient

A Float specifying the force per relative velocity for the dashpots. The default value is 0.0.

XFEMCrack#

class XFEMCrack(name: str, crackDomain: ~abaqus.Region.Region.Region, allowCrackGrowth: ~abaqusConstants.BooleanType = 1, crackLocation: ~abaqus.Region.Region.Region = <abaqus.Region.Region.Region object>, singularityCalcRadius: float | None = None, interactionProperty: str = '', elemId: tuple = (), nodeId: tuple = (), hasCrackFront: tuple = (), crackPlaneDist: tuple = (), crackFrontDist: tuple = (), autoDetectValue: str = '')[source]#

The XFEMCrack object defines the parameters needed to model crack initiation or crack growth using XFEM technology. Currently only assembly regions are supported. The XFEMCrack object is derived from the Crack object.

Notes

This object can be accessed by:

import part
mdb.models[name].parts[name].engineeringFeatures.cracks[name]
import assembly
mdb.models[name].rootAssembly.engineeringFeatures.cracks[name]

The corresponding analysis keywords are:

  • ENRICHMENT
    • INITIAL CONDITIONS

Attributes:
suppressed: Boolean

A Boolean specifying whether the crack is suppressed or not. The default value is OFF.

Methods

setValues([allowCrackGrowth, crackLocation, ...])

This method modifies the XFEMCrack object.

setValues(allowCrackGrowth: ~abaqusConstants.BooleanType = 1, crackLocation: ~abaqus.Region.Region.Region = <abaqus.Region.Region.Region object>, singularityCalcRadius: float | None = None, interactionProperty: str = '', elemId: tuple = (), nodeId: tuple = (), hasCrackFront: tuple = (), crackPlaneDist: tuple = (), crackFrontDist: tuple = (), autoDetectValue: str = '')[source]#

This method modifies the XFEMCrack object.

Parameters:
allowCrackGrowth

A Boolean specifying whether the crack is allowed to propagate (grow). The default value is ON.

crackLocation

A Region object specifying the initial crack location. This parameter is required when *allowCrackGrowth*=OFF.

singularityCalcRadius

None or a Float specifying the radius from the crack tips within which the elements are used for crack singularity calculations. This argument applies only when *allowCrackGrowth*=OFF. The default value is None.

interactionProperty

A String specifying the name of the ContactProperty object that defines the contact properties for the crack surfaces. The default value is an empty string.

elemId

A sequence of Ints specifying the labels of the elements that are intersected by the initial crack location. This argument is used only by the input file reader.

nodeId

A sequence of Ints specifying the position of a node in the corresponding element connectivity. This argument is used only by the input file reader.

hasCrackFront

A sequence of Ints specifying the values indicating the inclusion/exclusion of the crackFrontDist values. A zero value indicates that crackFrontDist is not specified for the ith pair elemId and nodeId. This argument is used only by the input file reader.

crackPlaneDist

A sequence of Floats specifying the values of the first signed distance function. This argument is used by the input file reader.

crackFrontDist

A sequence of Floats specifying the values of the second signed distance function. This argument is used only by the input file reader.

autoDetectValue

An integer specifying the number of element layers around the crack location, to which the crack domain is shrunk.